返回首页
智远网 > 短文 > 教案 > 正文

比的基本性质教学反思

2025/08/17教案

此篇文章比的基本性质教学反思(精选6篇),由智远网整理,希望能够帮助得到大家。

比的基本性质教学反思 篇1

比的基本性质的学习是学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,五年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,所以这节课我充分调动学生的思维,让学生提出猜想——验证,并能很好的用数学语言进行概括和总结出比的基本性质——比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。这叫做比的基本性质。本节课在引导学生对数学知识的整理过程中培养了学生的逻辑推理能力和对数学知识的高度概括能力做得比较成功。

一、 在学生复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?当有的学生根据分数与比的关系、分数与除法的关系后就自然而然的猜想出比的基本性质——比的'前项和后项同时乘或除以一个相同的数(零除外),比值不变。这叫做比的基本性质。在验证的过程中引导学生在小组合作交流中分析、整理、推导验证的具体的语言的表达能力,如6:8的前项和后项同时乘以2得12:16它们比值都还是等于3/4,所以第一部分:比的前项和后项同时乘一个相同的数比值不变,又如6:8的前项和后项同时除以2得3:4所得的比值还是一样的3/4,所以第二部分:比的前项和后项同时除以一个相同的数,比值不变,还如当比的前项和后项同时乘0的话,这时所形成的比就没有意义了,所以综合以上三个结论,得出比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。这叫做比的基本性质。

二、在应用比的基本性质化简比的时候,培养学生对知识的概括能力。当讲完了比的基本性质后出了三道较有代表性的化简比的练习,让学生在做练习的过程中归纳和整理出化简比的方法。15:10 (整数比) 2:0.75(小数比),1/6:2/9(分数比),学生做完后交流中发现解法都有不只一种,通过交流探讨,小结出一套比较切合实际的方法。

1、化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简,

2、是小数先转化为整数比→最简比,

3、是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。大部分的学生在掌握了以上的三种解法后,在化简比的过程中省了很多的麻烦,练习的效率也比较快!

诚然,这节课在对学生思维的培养起到很大的推动作用,并且效果也比较明显,很多学生在回答问题的时候,也能够用较准确的数学语言表达,如6:8化成简比是3:4(学生大多数会说出较完整的文字——根据比的基本性质比的前项和后项同是除以2,比值不变)。但是本节课的练习的层次性没有体现,如只练习了求比值和化简比,没有足够的时间去分析求比值和化简比的区别!

比的基本性质教学反思 篇2

《分数的基本性质》这一模块的主要资料是理解分数的基本性质,并根据分数的基本性质使一个分数的分子和分母同时扩大或缩小为以后学习分数的约分和通分打基础,同时,也为以后学生学习分数加减法打基础。

在学习这一部分知识前,学生已经学习了分数的意义,掌握了分数与除法的关系,那么在以前已经学习过了除法商不变的性质,讲分数的基本性质,从商不变的性质入手,学生学习起来就不会很吃力。在那里,我首先举了一个除法的例子,如:32除以4,学生口算出商为8,然后学生进行被除数和除数同时扩大或缩小相同倍数的练习,回忆起以前学过的商不变的性质,在那里,教师异常强调了0除外的意义。

在对商不变的性质进行复习后,引出前面刚刚学习过的分数和除法的关系,由学生自我总结出分数的`基本性质,如:32除以4就能够写成分数四分之三十二,经过被除数就是分子,除数就是分母,得出在商不变的性质能够转化成分数的基本性质。学生很容易的就理解了分数的基本性质。

随后,对分数的基本性质进行一些相关练习,加深学生对这个性质的理解和运用。

比的基本性质教学反思 篇3

许许多多的知识点,使得教师只能用简单的“传授——接受”的教学方式来进行。而学生只是记忆、再现这些知识点,沦为考试的奴隶。其实知识是死的,课堂教学绝不仅仅让学生拥有知识,更应该让学生拥有智慧,拥有获取知识的方法。

从教育心理学角度看,学生智慧的发展,离不开智慧的熏陶。智:是人类个体的认识过程或认知结构,即对外部信息的感知、整理、联想、储存很搜索、提取、操作,或通过此过程形成的认知水平。慧:是人类个体所认知事理的评判过程和评判标准。我校通过创设智慧课堂,使教学触及学生的世界,伴随他们的认知活动,做到了“以智促知” 。

我教学时注意了以下几点:

1、注重从学生已有的知识出发,主动建构知识。在教学“比例的基本性质”时,让学生自己选择例子来探索,在探索中发现规律,得到结论。让学生处于积极探索的状态,唤醒了学生学习中一些零散的体验,并在教师的引导下主动将这些体验“数学化”,提炼出数学知识。

在教学中,不仅要求学生掌握抽象的数学结论,更应注重学生的“发现”意识,引导学生参与探讨知识的形成过程,尽量挖掘学生的潜能,能让学生通过努力,自己解决问题。这一教学过程,让学生通过计算、观察、发现、自学的方式,使学生在自己探索中学习知识,发现知识,并通过讨论,说出判断两个比能否组成比例的依据,促进了学生学习的顺利进行。

2、用教材教,体现教学的民主性。因为学生对比的知识了解甚多,所以在研究“比例的基本性质”的时候,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳法研究的过程,并渗透科学态度的教育。

整个教学过程力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。如要求学生用自己的语言归纳比例的基本性质,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放,让学生的.聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。

3、在运用比例的基本性质进行判断时,要求学生讲明理由,培养学生有根据思考问题的良好习惯;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯。

4、给予学生自主探究的时间、自由驰骋的思考空间,允许他们有不同的想法、不同的方法,在开放式、个性化的学习中生成灵感,碰撞智慧。正是学生用自己独特的学习方式来解决问题,课才变得生动和真实,学习才显得如此活泼和有效。数学的学习成了充满灵性的创造过程,成了放飞心灵的快乐之旅。课堂已不仅是学科知识传递的殿堂,更是智慧培育的圣殿。

比的基本性质教学反思 篇4

比的基本性质与除法中商不变的性质、分数的基本性质有着密切的联系。但这节课,我没有用这两条性质来转入新知,而是让学生在判断两个比的比值是否相等,写出一个比与比值相等的若干个比的`基础上,进行观察,分析这些等比的前项、后项和比值的变化规律上,再以小组讨论的学习的形式,归纳概括出比的基本性质,这样学来的知识,经历了观察—分析—发现—集体归纳小结,既学得轻松自如,又记忆深刻。这比直接灌输明显要有实效。

当学生学习了比的基本性质后,再倒回去与商不变的性质、分数的基本性质相对照,更明确了他们实质上是一脉相承的。把他们三者联系起来板书,沟通了新旧知识的练习,起到了举一反三、融会贯通的作用。 对例1的教学,我不是采用讲授法,如果教师边讲解化简过程,边板书,也许学生能听懂,但效果不一定好,在这节课堂中,我采用了尝试解决法,由学生尝试化简,遇到问题小组共同探究、共同商讨、找到化简的办法,最后还进行板演,通过板演学生与学生之间互评,再把自己的解题过程与黑板板演对照、进行自评。有了这样有效的评价过程,让学生体验到了成功的快乐,增强了自尊心与自信心,体验了数学学习的价值,逐步建立正确地价值观。

本节课我主要用让学生在发现中学习、在比较中学习、在尝试中学习、在练习中学习、在评价中学习,教学效果较好。

比的基本性质教学反思 篇5

在教学比的基本性质这节课时,首先,进行了复习,复习了上节课所学知识,什么是比?比个部分的名称,以及求比值和比、分数、除法之间的联系,又复习了分数的基本性质,及作用(通分、约分),商不变的性质及作用(小数除法的计算或简算)。

过渡:比、分数、除法之间是有联系的,那么比会有什么样的`性质呢?学生猜测。

其次,探究比的基本性质。通过求比值6:8,12:16,得出两个比的比值相等,即两个比相等,6:8=12:16,观察前项、后项的变化,6:8=(6×2):(8×2)=12:16,发现规律:比的前后项同时乘上一个相同的数(0除外),比值不变。观察12:16=6:8,前后项的变化,12:16=(12÷2):(16÷2)=6:8,发现规律:比的前项、后项同时除以一个相同的数(0除外),比值不变。把两条规律合在一起,就叫做比的基本性质。

过渡:学了比的基本性质,有什么用呢?

接着,教学化简比。先介绍什么叫最简单的整数比,然后化简整数比、分数比、小数比。

最后,进行了全课总结。

回顾本节课,探究比的基本性质及化简比讲的较细致,学生掌握的也不错,会背比的基本性质,及灵活应用比的基本性质,化简整数比、小数比。同时本节课根据比、分数、除法的联系,渗透了比的基本性质、分数的基本性质、商不变的性质之间的联系。另外让学生明白知识是为了应用,明确学习的目的,不尽人意之处是由于时间关系,小数比的化简没有教学。

比的基本性质教学反思 篇6

1、为学生提供了充分的,必备的材料。

教学时首先创设一个活动:你能移动一个小数点,使被除数、除数变成另一个小数而商不变;你能把一个分数的分子、分母变成分数值不变的较小的分数吗?使学生置于数学活动中,并在这个活动环境中调动其数学现实,从而发现、小结数学现象或规律。复习小结出’商不变的性质’,’分数的'基本性质’。

2、让学生充分发现。

学生理解了以前学习的内容,表面上看没有多大的联系,其实是潜在的迁移,发现了"小数、分数变大或变小"这一数学现象后,教师通过创设情景,让他们开展讨论、分析’分数、小数、比’之间如何’变换’,从不同的例子进行探讨,从而让他们主动经历探索规律的过程,使学生不仅品尝思维结果,还欣赏到思维过程的无限风光。

3、教师适时点拨,催其探究。

课堂讨论学生欲知如何’变换’而无从下手时,教师及时指点迷津,"可以借助我们举的例子来分析",为学生探监点明方法。当学生小结规律时,教师用拖足的语气引起学生的反思,如:照这样下去会发现……。进而引导学生对已发现的规律有一个完整的认识,会激励学生深入探监。