《成数》教学设计
此篇文章《成数》教学设计(精选4篇),由智远网整理,希望能够帮助得到大家。
《成数》教学设计 篇1
教学目标:
1、结合具体事物,经历认识“成数”,解答有关“成数”的实际问题的过程。
2、对“成数”问题有好奇心,获得运用已有知识解决问题的成功体验。
教学重点:
理解“成数”的意义。
教学难点:
解决解答有关“成数”的实际问题。
教学过程:
一、复习
1、填空
①四折是十分之(),改写成百分数是()。
②六折是十分之(),改写成百分数是()。
③七五折是十分之(),改写成百分数是()。
2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?
二、创设情境,导入新课
同学们有听农民们说:“今年我家的.稻谷比去年增产二成”,“我家的桂皮晒干后只有五成”等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是“折扣”,而农业上与百分数有关的术语就是“成数”。渗透环保教育
三、探究体验
(一)成数表示一个数是另一个数的十分之几,通称“几成”。例如一成就是十分之一,改写成百分数就是10%。
1、让学生尝试把二成及三成五改写成百分数。
2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。
3、练习:将下列成数改写成百分数。
二成=()%;四成五=()%;七成二=()%。
(二)教学例2
1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少
万千瓦时?
2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位“1”?
3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
4、理解“节电二成五”就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。
350×(1-25%)=262.5(万千瓦时)
或者引导学生列出
350-350×25%=262.5(万千瓦时)
四、巩固练习
1、三成=()%;五成六=()%;八成三=()%;
2、第9页做一做
3、解决问题
(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?
(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)
(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?
(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?
五、课堂总结
这节课你收获了什么?
《成数》教学设计 篇2
教学目标:
理解成数的概念及其在日常生活中的实际应用。
学会将成数转化为分数、百分数,并能进行相互之间的转换。
掌握成数在解决实际问题中的应用,培养学生的逻辑思维能力和问题解决能力。
教学重点:
成数的概念及其与分数、百分数之间的关系。
成数在解决实际问题中的应用。
教学难点:
成数概念的深入理解。
成数在实际问题中的灵活运用。
教学准备:
多媒体课件,包含成数的定义、示例及练习题。
实物或图片,用于展示成数在日常生活中的应用场景。
教学过程:
一、导入新课
通过生活中的例子,如商场打折、农业收成等,引出成数的概念。
提问学生是否留意过类似的新闻报道,引导学生分享自己的见解。
二、讲授新课
成数的定义:成数表示一个数是另一个数的十分之几,通常用于表示增长或减少的'比例。
成数与分数、百分数的关系:成数可以转化为分数或百分数,便于进行计算和比较。例如,三成等于3/10,也等于30%。
成数在实际问题中的应用:通过具体的例题,如农业收成、销售增长等,讲解如何运用成数解决实际问题。引导学生分析题目中的数量关系,找出单位“1”,列出关系式,并进行计算。
三、巩固练习
提供一系列练习题,包括将成数转化为分数、百分数,以及解决与成数相关的实际问题。
鼓励学生独立思考,小组合作完成练习,互相讨论交流。
四、课堂小结
总结成数的概念、与分数、百分数的关系及其在实际问题中的应用。
强调成数在日常生活和工作中的重要性,鼓励学生多观察、多思考,提高解决实际问题的能力。
五、作业布置
布置与成数相关的练习题,巩固学生对成数的理解和应用。
鼓励学生收集生活中的成数例子,下次课堂上进行分享和交流。
教学反思:
在教学过程中,注意观察学生的反应和表现,及时调整教学方法和策略。
对于学生在练习中出现的错误,要及时进行纠正和指导,帮助学生理清思路,掌握正确的解题方法。
通过学生的作业和课堂表现,评估教学效果,为下一节课的教学提供参考和改进方向。
《成数》教学设计 (通用12篇)
作为一无名无私奉献的教育工作者,时常需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。怎样写教学设计才更能起到其作用呢?以下是小编收集整理的《成数》教学设计 (通用12篇),欢迎阅读与收藏。
《成数》教学设计8篇
作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。教学设计应该怎么写才好呢?下面是小编为大家整理的《成数》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《成数》教学设计 篇3
一、教学目标
(一)知识与技能
1.理解“折扣”“成数”的含义,知道它们在生活中的简单应用。
2.在理解“折扣”“成数”含义的基础上,能自主解决与此相关的实际问题,培养学生运用知识解决实际问题的能力。
(二)过程与方法
利用生活情境重现结合所学数学知识,发挥学生学习的主动性;同时通过引导对比及学生的自主探索,发现知识之间的联系。
(三)情感态度和价值观
通过教学,使学生感受到数学与实际生活的联系,培养学生数学的应用意识。在自主探索的过程中,感受数学学习的乐趣。
二、教学重难点
教学重点:理解“折扣”“成数”的含义,并能进行应用。
教学难点:在理解的基础上,与百分数应用题建立联系,正确解决问题。
三、教学准备
教学课件。
四、教学过程
(一)创设情境,引入新课
1.同学们去商场购物的时候遇到过商家做促销活动吗?一般他们会采用哪些促销手段?
2.刚才同学们都提到了“打折”这种情况,没错,像这样降价出售一些商品,引发人们的购买欲望,是商家常用的促销手段之一。今天这节课,我们就先来了解有关于“折扣”这件事(板书课题──折扣)。
【设计意图】从学生的生活经验入手,引导学生进行知识的迁移,为学生自主探索理解打下基础,也让学生体会到数学与生活的联系。
(二)结合情境,学习新知
1.理解“折扣”
(1)(课件出示促销文字信息)这里的九折、八五折是什么意思?
(2)同桌互相说一说。
(3)反馈:
预设:①举例说明:一件衣服100元,八五折的话就只要85元。
②九折就是现价是原价的90%。
(4)归纳:商品打几折,其实就是指现价是原价的百分之几。
(5)练习:看折扣写出相应的百分数。
( )%( )%( )%
2.解决与“折扣”相关的问题
(1)课件出示教材第8页例1第(1)小题:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①独立完成并进行校对。
②反馈:谁能来说说自己是怎么想的,为什么这样计算?
重点分析以下问题:
问题一:八五折是什么意思?是把谁看作单位“1”?
问题二:求“买这辆车用了多少钱”也就是在求什么?(180的85%是多少)
(2)课件出示教材第8页例1第(2)小题:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①独立思考并完成,同桌交流解题思路。
②交流反馈:
重点对比两种解题方式:
第一种算法:原价160减去现价(即原价的90%):160-160×90%。
第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160×(1-90%)就是便宜的价钱。
想想哪种方法计算起来比较简便。
(3)练习教材第8页“做一做”,完成后校对。
(4)小结:通过刚才的问题解决,你发现原价、现价、折扣之间有什么关系吗?
现价=原价×折扣。
【设计意图】引导学生运用折扣的意义解决生活中的问题。让学生充分掌握学习的自主权,认真去分析、思考,并在理解的基础上展示不同的解题方法,实现问题解决的多样化,并进行方法优化的引领。
3.理解“成数”
生活中的'百分数还有很多,比如说“成数”。(板书课题──成数)
(1)学生自学教材,明确成数的含义。
(2)反馈:说说什么是成数,可请学生举例说明。
(3)练习:将下列成数改写成百分数。
二成=( )%;四成五=( )%;七成二=( )%。
【设计意图】有了折扣理解的基础,虽然学生在生活中对成数接触较少,但教师完全可以放手让学生去自学理解,并通过反馈对学生的自学情况进行了解,对培养学生的自学能力很有帮助。
4.解决与“成数”相关的问题
(1)课件出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
①学生读题,独立解答问题。
②交流说说解题思路。
思路一:今年比去年节电二成五,也就是今年比去年少25%,今年用电是去年的(1-25%),即350×(1-25%)。
思路二:去年用电数减去今年节约的度数,即350-350×25%。
教师小结:可以根据自己的理解和计算能力,选择合适的方法进行计算。
(2)课件出示教材第9页“做一做”:某市2012年出境旅游人数为15000人次,比上一年增长两成。该市2011年出境旅游人数为多少人次?
①独立完成再进行集体校对。
②说说如何解决这类“成数”的问题。
5.小结
(1)结合例1及例2说说我们是怎么解决有关“折扣”和“成数”的问题的?
(2)教师小结:在解答这类应用题时,关键是理解“折扣”及“成数”的含义,把“折扣”或“成数”化成百分数,再按解百分数应用题的方法解答。
【设计意图】引导学生通过对比、探讨,参与解题方法的总结,对于发展学生数学思维、数学语言表达很有帮助。
(三)应用练习,巩固认知
今天我们学习的知识可以帮助我们解决生活中的一些问题,现在请你来算一算,做一做。
1.课件出示教材第13页练习二第1题。
(1)独立完成,集体校对。
(2)引导学生按一定的顺序进行思考。
2.课件出示教材第13页练习二第3题。
书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这套书原价多少钱?
(1)请学生读题思考:9.6元表示的实际含义是什么,和八折有什么关系?引导明确:9.6元就是打折后比原价减少的钱数,它相当于原价的(1-80%)。
(2)尝试练习,集体校对。
3.课件出示教材第13页练习二第4题。
某县前年秋粮产量为2.8万吨,去年比前年增产三成。去年秋粮产量是多少万吨?
4.课件出示教材第13页练习二第5题。
某汽车出口公司二月份出口汽车1.3万辆,比上月增长3成。一月份出口汽【您现在访问的是六年级数学教案,请勿转载或建立镜像】车多少万辆?
(1)读题,找出关键句,想想两道题目中增长的3成,分别是谁的3成?也就是把谁看作单位“1”?应该怎样进行计算?
(2)独立完成,集体校对。
【设计意图】练习的设置和安排有层次性和针对性,教师对于练习的辅导也相应有层次性,简单的题由学生自行梳理、分析、解答,易错题和难题进行针对性点拨,对于学生对数学的学习应用也大有益处。
(四)回顾梳理,课堂总结
今天这节课我们学了什么?我们应如何解决这一类问题?
《成数》教学设计 篇4
教学目的
1.明确成数的含义。
2.能熟练的把成数写成分数、百分数。
3.正确解答有关成数的实际问题。
教学重点
1.成数的理解。
2.成数的计算。
教学难点
1.成数的理解。
2.成数的计算。
教学准备:班班通课件
教学过程:
【情景导入】
农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”……
教师:同学们有留意到类似的新闻报道吗?(学生汇报相关报导)
【新课讲授】
1.介绍成数的含义,会把成数改写成分数,百分数。
(成数:表示一个数是另一个数的十分之几,通称“几成”)
(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?
(学生讨论并回答)
教师板书:
成数 分数 百分数
二成 十分之二 20%
(2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。这里的“三成”表示什么?
②北京出游人数比去年增加两成。这里的两成表示什么?
引导学生讨论并回答。
2.运用成数的含义解决实际问题。
(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)分析题目,理解题意:
①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?
②找出数量关系式。
先让学生找出单位“1”,然后再找出数量关系式:
今年的用电量=去年的用电量×(1-25%)
③学生独立根据关系式,列式解答。
④全班交流。
方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)
方法二:350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时)
【课堂作业】
完成教材第9页“做一做”。
答案:15000÷(1+20%)=15000÷1.2=12500(人)
【课堂小结】
这节课我们一起学习了有关成数的.知识,你们对成数的知识有哪些了解?
【课后作业】
完成练习册中本课时的练习。
教学反思:“成数”已经广泛应用于表示各行各业的发展变化情况。教学本课时要多联系实际讲解,列关系式时要多强调哪个量是单位“1”,加强学生的逻辑训练。