返回首页
智远网 > 短文 > 教案 > 正文

《有理数的加法》教学设计

2025/08/30教案

此篇文章《有理数的加法》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《有理数的加法》教学设计 篇1

【教学目标】

1.会进行有理数加法运算.

2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.

3.会将有理数的减法运算转换成加法运算.

4.会进行加减混合运算.

此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体

会“化归”的思想方法.

【教学过程设计建议(第一课时)】

1.情境创设

除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:

第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?

如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还

可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.

2.探索活动

(1)需要特别注意的是,算式“( 3) (一2)= 1”

只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的.

课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.

与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然

后确定输赢球的个数,这是绝对值问题.

(2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.

3.例题教学

例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.

学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

【教学过程设计建议(第二课时)】

1.探索活动

从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.采用在几何图形中填数字的'验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.

在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.

此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.

2.例题教学

例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.

【教学过程设计建议(第三课时)】

1.情境创设

小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.

2.探索活动

(1)用问题串引导学生展开探索活动,例如:

小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算?

小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.

小明与小丽的结论相同,是偶然巧合吗?请举例说明.

(2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.

3.例题教学

例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5 (一8)”这样的例子,但没有提出“代数和”的概念.

设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.

教学中,如有必要可适当补充加、减混合运算的例题、习题.

4.小结

除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实施.但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化.

《有理数的加法》教学设计 篇2

今天我说课的题目是“有理数的加法(一)”,“有理数的加法”说课教案、课堂设计及教后反思。本节课选自华东师范大学出版社出版的《义务教育课程标准实验教科书》七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

一、教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

从以上两点不难看出它的地位和作用都是很重要的。

接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)

教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

二、教材处理

本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的.,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

三、教学方法和数学孚段

在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

四、教学过程的设计。

1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

课堂设计及课后反思

我9月19号在阿城市第五中学上了一堂数学公开课,由于得到通知的时间比较仓促,所以准备的不算充分。在各个方面一定存在着疏漏和缺陷,在这里请大家多多指教。我主要从以下几个方面加以说明。

一、问题的引入:在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。

二、问题的探索:在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

三、习题的配备:整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对加法法则的理解进一步的加强。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个加数及和之间的关系作出判断,并且对各种情况作出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。

四、总之在整个教学过程的实施中,出现了一些问题,也有一些不尽人意的地方。希望大家批评指正。

《有理数的加法》教学设计 篇3

1.3.1有理数的加法

一、教学目标

(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;

(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;

(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。

二、教学重、难点

重点:了解有理数加法的意义,会根据有理数加法法则进行运算;难点:有理数的加法中异号两数如何进行加法运算。

三、教学过程

(一)创设情境,导入问题

活动1学校的运动会刚结束不久,我们知道在足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。那么,在本次运动会中,我们学校红队进4个球,失两个球。蓝队进一个球,失一个球。请问两队的净胜球数分别是多少?如何表示?

红队:4+(-2)蓝队:1+(-1)

师:请同学们观察这两个式子,和我们小学所学的加法运算有什么不同呢?生:有了负数的参加师:像这种有了负数的参加的加法运算我们称为什么?想知道有理数是如何进行相加的呢?那么我们今天就来共同研究——有理数的加法(引出课题)。设计意图:采用与生活实际相关的足球比赛引入,通过净胜球数说明实际问题中要用到正数与负数的加法,从而提出问题,让学生思考,可以激发学生探究的热情。

(二)启发探索,获取新知活动2看下面的问题

1、一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m.

如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

两次运动后物体从起点向右运动8m.写成算式就是:5+3=8①

2、如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?

两次运动后物体从起点向左运动8m.写成算式就是:(-5)+(-3)=-8②

这个运算也可以用数轴表示,其中假设原点O为运动起点:

-3–9–8–7–6–5-8–4-5–3–2–1O 4、如果用正数表示向右运动,用负数表示向左运动,就可以用算式描述相应的问题。

活动31、如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向右运动了2m,写成算式就是:5+(-3)=2③

用数轴表示为:

5-3O122345

2、探究;利用数轴求以下情况时物体两次运动的结果:

(1)先向左运动5m,再向右运动3m,物体从起点向___运动了___m;(2)先向右运动5m,再向左运动5m,物体从起点向___运动了___m;(3)先向左运动5m,再向右运动5m,物体从起点向___运动了___m;

(4)如果物体第一秒向右(或左)运动5m,第二秒原地不动,两秒后物体从起点向右(或左)运动了___m.

师生行为:让学生自己探究,利用数轴可得出相应结果,依次填空;引导列算式为:-5+3=-2④

5+(-5)=0⑤-5+5=0⑥5+0=5或-5+0=-5⑦

设计意图:通过表演、结合数轴,其目的是让学生了解用数轴表示加法的方法,从而为后面利用数轴探究其他情况做准备。

异号相加有三种情况,要充分利用数轴,由在数轴上表示结果的点所处的位置以及表示结果的点与原点的距离,就可以确定两次运动的结果。

引导学生观察①到⑦的式子中可以发现什么规律?(①②两式是同号两数相加、③④⑤⑥是异号两数相加且⑤⑥是两加数绝对值相等、⑦是一个数与0相加)

请同学们分组讨论研究和的符号以及绝对值与两个加数之间的符号以及加数绝对值之间有什么关系?从而分组概括有理数的'加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加

2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0

3、一个数同0相加,仍得这个数

有理数运算三个步骤:①确定类型②确定和的符号③确定和的绝对值

设计意图:运算法则是从实例引出的,这时说明法则的合理性。使理解法则并学会运用法则

(三)运用新知

活动5例1计算(1)(-3)+(-9)(2)-4.7+3.9

解:原式=-(3+9)解:原式=-(4.7-3.9)=-12=-0.8

例2足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数。

(四)巩固新知,变式练习(课本P22)1.用算式表示下面的结果:(1)温度由-4℃上升7℃;

(2)收入7元,又支出5元。2.计算:

(1)15+(-22);

(2)(-13)+(-8);

(3)(-0.9)+1.5;

(4)+(-).

(五)课堂总结,布置作业

这节课我们学习了哪些知识?你有什么收获?(师生一起回顾有理数加法法则)

作业:习题1.3第1、7、11

《有理数的加法》教学设计 篇4

一、教学目标:

1、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.

3、情感态度与价值观

培养学生主动探索的良好学习习惯.

二、教材分析:

难? ? 点:异号两数相加.

3、教学过程

教学过程

教师活动

学生活动

设计意图

知识回顾

5分钟

新知讲解

8分钟

15分钟

1、什么叫相反数。

什么叫绝对值。

2、-5的相反数和绝对值分别是什么。

0的相反数和绝对值分别是什么。

激趣

请大家帮老师算一算:

小明昨天借了老师十元钱买文具,今天又借了老师八元钱,请问他还欠我钱吗。

如果欠钱的话又欠我多少呢。

你能用数学算式表示出来吗。

如果小明今天还给老师八元钱又该怎么计算呢。

如果小明今天还给老师十元钱又该如何计算。

如果小明说今天没带钱,那他又欠我多少呢。

自主探究

1、请同学们自己阅读教材P16到P18,并结合刚才说的看看你自己理解了多少。还有那些不理解的我们共同解决;

2、如果自己不清楚的话,请同学们小组之间互助解决以下问题:

(1)如果是同号两数相加,符号如何决定,和的绝对值和绝对值的和又有什么关系。

(2)如果是异号两数相加,符号如何决定,其绝对值之间又存在什么关系。

(3)互为相反数两数相加结果又是什么。

(4)一个数同0相加结果又是什么。

1、只有符号不同的两个数叫做互为相反数;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值

2、-5的相反数是5,绝对值也是5;

0的相反数和绝对值都是0

欠老师-10+(-8)=-18(元);

-10+8=-2(元);

-10+10=0(元);

-10+0=-10

同号两数相加,取相同的符号,并把绝对值相加;

例:5+3=8;

(-5)+(-3)=-8

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

例:(-3)+5=2;

3+(-5)=-2

互为相反数两数相加得0

例:5+(-5)=0;

-10+10=0

一个数同0相加,仍的这个数

例:-10+0=-10;

5+0=5

回顾相反数与绝对值的概念为本节课能准确理解有理数加法法则打下基础

让学生通过生活中熟悉的例子体会数学在期中的应用,为我们后面总结有理数加法法则打下基础

通过提问,边总结边结合实例进行讲解,让学生对法则有更深的理解

例题讲解5分钟

巩固练习

10分钟

知识小结

2分钟

例1 计算(-3)+(-9);

(-4.7)+3.9.

1、请在括号内填写适当的有理数并说出其中的法则:

2、列式计算

(1)-5的相反数与-18的和;

(2)一个数比-6大1,另一个数比-10大4,求这两个数的和。

3、如两个有理数之和为正,则两数中(? )

A 同为正数? ? B 同为负数

C 一正一负? ? D 至少有一个为正数

4、下列说法中正确的'是(? )

A 两数的和必须大于每一个加数

B 两数和为负数,则一个数为正数,另 一个数为负数

C 两个有理数和的绝对值等于这两个有理数绝对值的和

D 异号两数相加,和的符号取绝对值较大的数的符号

请同学们回顾一下有理数加法法则;

互相交流下自己到底学会了多少,还有那些不会。

(-3)+(-9)=-(3+9)=-12;

(-4.7)+3.9=-(4.7-3.9)=0.8

-33

-12

-(-5)+(-18)

[(-6)+1]+[(-10)+4]

D

D

让学生自己解决,不会时再以小组讨论方式进行,目的让学生规范计算过程,并对同号相加以及异号相加有更深一步了解

这些题目先让学生自己练习,对于不会的可以以小组合作方式共同解决,期中

1、2题主要练习计算,3、4主要练习学生对加法法则的深度理解能力,能够帮助学生对本节课只是更好的吸收和消化

布置作业

必做题:课本P24习题1.3第1题,第2题

选做题:

-98×201+99×202=______

教学反思

1、本节课在刚开始引入时以学生熟悉的金钱方面入手,让大家不会对本节课的知识有陌生感,同学自己学习以及前面的引入,学生在总结有理数加法时不会感觉那么突兀,而且能够更好的理解有理数加法法则;

2、结合学生的实际情况,在本节课没有设置比较难的题目,目的是增加大家的学习兴趣以及树立学生的自信心。

3、对个别成绩好的课后要另外增加难度。

《有理数的加法》教学设计 篇5

教学目标:

1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.

2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.

3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神.教学重点:有理数的加法法则,能准确地进行有理数的加法运算.教学难点:异号两数相加的法则.

教学程序设计:

一.类比联想提出问题

通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法.

又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.

具体问题是:在下列问题中用负数表示量的实际意义是什么?

(1)某人第一次前进了5米,接着按同一方向又向前进了3米;

(2)某地气温第一天上升了3°C,第二天上升了-1°C;

(3)某汽车先向东走4千米,再向东走-2千米。紧接着,回答:

(1)某人两次一共前进了多少米?

(2)某地气温两天一共上升了多少度?

(3)某汽车两次一共向东走了多少千米?

组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.

在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与.

二.直观演示归纳法则

用6个实例讲两个有理数相加的问题:

(1)向东走5米,再向东走3米,两次一共向东走了多少米?

(2)向西走5米,再向西走3米,两次一共向东走了多少米?

(3)向东走5米,再向西走5米,两次一共向东走了多少米?

(4)向东走5米,再向西走3米,两次一共向东走了多少米?

(5)向东走3米,再向西走5米,两次一共向东走了多少米?

(6)向西走5米,再向东走0米,两次一共向东走了多少米?

点拨:“一共”的含义是什么?通过小学的学习知道,就是两个数相加.

探究:若设向东为正,向西为负,你能写出算式吗?

(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;

(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;

(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;

以上六个问题的设置运用了数学中分类的'思想方法,因为两数相加,按符号异同划分为三大类。即:

这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;

问题(3)、(4)、(5)是异号两数相加的情况;

问题(6)有是有一个加数为零的情况.

这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则.

有理数的加法法则:

一般步骤为:

(1)根据有理数的加法法则确定和的符号;

(2)根据有理数的加法法则进行绝对值的加减运算.

前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.

总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗?

提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.

三.应用迁移巩固提高

为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题和练习题,选题遵循由浅入深,循序渐进的原则.

类型:同号、异号、0与一个数相加的三种情况的有理数相加

例1:计算下列各题:

(1)(+7)+(+4)

(2)(-3)+(-9)11

(3)4+(-4)

(4)()+(-))23

(5)(-10.5)+(+1.5)

(6)(+5)+0

(7)(-7)+0

(8)0+(-8)

分析:先确定符号,在进行绝对值加减运算.

解:(2)(-3)+(-9) (两个加数同号,用加法法则的第1条计算) =-(3+9) (和取负号,把绝对值相加)

=-12.

通过此例,训练学生对法则的理解和直接应用,进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

变式题1:填空(口答,并说明理由)

(1)(-4)+(-7)=____()(2)(+4)+(-7)=_____()

(3)7+(-4)=_____()(4)4+(-4)=_____()

(5)9+(-2)=_____()(6)(-9)+2 =_____()

(7)(-9)+0 =_____()(8)0+(-3)=_____()

变式题2:今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问:

(1)两次一共上升了多少厘米?

(2)计算当a、b为下列各数时的值:

① a= 4 , b=3 ② a= -3 , b= 7 ③ a= 5 ,b= -5 ④ a= 4, b= -1 ⑤ a = 3 , b=0

(3)说出以上运算结果的实际意义

四. 总结反思拓展升华

为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想.

(1)本节所学习的主要内容有哪些?

(2)有理数的加法法则在应用时应注意的哪些问题?(确定“和”的符号,计算“和”的绝对值两件事)

(3)本节课涉及的数学思想方法主要有哪些?五.作业课本第19页练习2、3题.

补充:

1.计算:

(1)(-10)+(+6);

(2)(+12)+(-4);

(3)(-5)+(-7);

(4)(+6)+(+9);

(5)67+(-73);

(6)(-84)+(-59);

(7)33+48;

(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7);

(2)3.8+(-8.4);

(3)(-0.5)+3;

(4)3.29+1.78;

(5)7+(-3.04);

(6)(-2.9)+(-0.31);

(7)(-9.18)+6.18;

(8)4.23+(-6.77);

(9)(-0.78)+0.

《有理数的加法》教学设计 篇6

《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。

教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。

学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。

教学目标:

1、理解加法的意义。

2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。

3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。

教学重点:法则的探索与应用

教学难点:异号两数相加

教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。

教学过程:

一、复习回顾

1、一个不为零的有理数可以看做是由哪两部分组成的?

2、比较下列各组数绝对值哪个大?

①-22与30;②-与;③-4.5和6

3、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?

(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。)

二、新知探究

1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。

2、你还能举出类似用加法运算的实例吗?

3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?

4、总结归纳有理数的加法法则。

突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。

(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的',并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)

三、运用法则

例:计算

(1)(+2)+(-11) (2)(-12)+(+12) (3)(+20)+(+12)

(4)(- )+(- ) (5)(-3.4)+(+4.3) (6)(-5.9)+0

思维过程:一“看”二“定”三“和差”

(主要是通过设置一组题目,理解法则,并展现思维过程“一看、二定、三和差”,规范学生的解题过程)

四、巩固法则

1、开火车游戏。

第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。

2、填数游戏。

将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为0

3、思考:两个有理数相加,和一定大于每一个加数吗?

(设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)

五、小结

加法顺口溜:有理加减不含糊,同号异号分清楚;同号相加号相随,异号相减号大绝;相反数、和为0;碰见0、不变形。

(用一段“顺口溜”识记加法法则)

六、作业设计

1、练习完成在书上,习题1~2完成在作业本上。

2、在圆圈内填上彼此都不相等的数,使得每条线上的三个数之和为0。

五、小结:用一段“顺口溜”识记加法法则。

反思:“运算能力”是修订后的课程标准提出的“十大核心概念”之一,而“有理数加法”是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础,有理数加法法则是有理数加法运算的准绳,更是难倒了一大片初学者,有的同学学习了有理数的加法法则不但不能叙述法则,反倒连小学学过的非负数的加法运算也不会了,如何突破这个障碍,我认为关键还是加法意义的理解,应让学生置身于现实情境中搞清楚加法究竟是怎么回事,这样一来“和”的符号的确定与“和”的绝对值的确定也就是顺理成章的事儿了。

对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,熟知加法就是连续两次变化的总结果,然后再给这些算式赋予新的实际意义更利于理解加法的意义。其实,只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些,通过操作,学生对于将算式置于实际情景非常感兴趣。对于接下来将算式按加数分类,探究和的符号与加数符号的关系,还有和的绝对值与加数绝对值的关系都有着浓厚的兴趣,尤其是得到“互为相反的两数相加和为零”时就有学生提到:异号两数相加其实就是正负一抵消,余下的部分就是和。看来只要在课堂上通过适当的引导让学生自身释放出琢磨的能量比让学生打开大脑的录音系统录音要好得多。通过后续学习的考察,学生对于加法法则的记忆与应用并非停留在表面的记忆上,而是对法则有了更深层次的理解,也没有学生刻意追求用教材上的句子一字不漏地来叙述加法法则,他们都能用自己理解的语言来说明到底是为什么。

再思考:这节课是我调入新的学校上的汇报课,领导还有同事们对我的课都做出了中肯的点评,最后一位颇有资历的领导谈到:数学教学应体现其本质,用“数轴”探究有理数的的加法更能体现加法的本质,授课者应做好合理的应用。换言之,本节课未能很好体现加法的本质。个人思考再三认为加法的本质就是“连续两次变化的总结果”,用数轴表示向东走向西走,还是举生活中的盈亏实例等都体现了加法的本质。新旧版本的华师大教材都是以“数轴”为载体探究有理数加法法则的,这种载体的应用主要凸显了直观,变化的结果一清二楚,也体现了数与形的有效结合,无疑是一种很好而有效的载体,但我们为什么不在教材现有载体的基础上做一些突破,让学生从多角度多方位理解加法运算呢!其实现实生活中的“盈”与“亏”生活气息浓郁,且学生熟知,会吸引众多的学生参与,“同号相加”就是“盈盈”型或“亏亏”型,“异号两数相加”就是“盈亏”型,(+5)+(-5)为什么是0?显然盈亏一样,最终兜里没钱!而(+3)+(-10)为什么结果取“-”且用“10-3”,盈少亏多呗!最终还是亏了7元!将加法置身于这样的情景更有利于理解加法的意义,总结加法法则,理解加法法则。