返回首页
智远网 > 短文 > 教案 > 正文

《解决问题的策略》教学设计

2025/09/03教案

此篇文章《解决问题的策略》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《解决问题的策略》教学设计 篇1

一、教学内容

苏教版数学第八册第五单元《解决问题的策略———画图》

二、教材简析(见教学用书)

三、教学目标

1、知识技能方面:使学生在解决有关面积计算的实际问题的过程中,初步学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定正确的解决问题的思路;能正确解答与长(正)方形面积计算的有关实际问题。

2、数学思考和解决问题方面:使学生经历画示意图描述和分析问题的过程,积累一些整理条件和问题、借助图形直观分析数量关系的经验,感受画示意图对理解题意和分析数量关系的作用,提高分析问题和解决问题的能力,发展几何直观。

3、情感与态度方面:使学生在解决问题的过程中,进一步体会数学与生活的联系,让学生体验经过克服困难而获得解决问题的成功体验,提升学好数学的信心。

四、教学重难点

学会用画图的方法表示图形面积增加或减少的'情况,帮助理解题意,得到解决问题的方法。

五、教具学具

多媒体课件,

六、教学过程

一、引入新课

1、出示复习题。

师:观察这三幅示意图,你能说说每一题的条件和问题分别是什么吗?

谁能口答算式?(数量关系式)

同学们对长方形面积计算的问题掌握得很好,今天这节课我们继续来解决一些面积计算的问题。(板书

《解决问题的策略》教学设计 篇2

教学内容:

苏教版五年级上册第63—64以及相应的练习。

达成目标:

1、从解决简单的实际问题的过程中,体会用“一一列举”策略的特点和价值,能不遗漏,不重复找到符合要求的所有答案。

2、通过反思和交流,进一步积累解决问题的经验,发展思维的条理性和严密性,从而使学生获得解决问题的成功体验,树立学好数学的自信心。

教学重点:

体会策略的价值,感受策略带来的好处,使学生能主动运用所学的策略解决问题。

教学难点:

在学习过程中,能主动反思自己的解题过程提升对策略的认识。

教学过程:

一、导入

出示草原牛羊成群图。

问:你们喜欢草原吗?那里的风景优美,牛羊又肥又壮,可是牧民叔叔准备用18根1米长的栅栏围一块长方形的羊圈,你能为牧民叔叔设计一下吗?

二、探究策略

1、初次探究

小黑板出示:用18根1米长的栅栏围成一个长方形的羊圈。

问:根据这句话的信息你想采用什么方法来帮牧民叔叔呢?

问:用摆小棒的方法来研究的上来汇报一下,有多少种长方形?你能通过有条理的操作把不同的围法都找出来吗?感觉怎样?有没有其它的方法?

2、进一步探究

问:用18根1米长的栅栏围成一个长方形的羊圈周长是多少?如果宽是1米,长是多少米?如果宽是2米,长是多少米?……

问:你能把符合要求的长和宽可能性一一列举出来吗?

学生填写第63页的表格。

3、体会列表的特点

问:反思一下刚才的思考过程,你有什么体会?

板书:有序(有条理)一一列举不遗漏不重复。

让学生再次说说应该怎样有条理地思考。

出示:像这样有条理的'把可能性一一列举出来,从而找到问题的答案,这种解决问题的策略就叫列举。在列举时要注意按照一定的顺序,这样才能做到不重复、不遗漏。

4、进一步引导

这几种围法中牧民叔叔会喜欢那种呢?为什么呢?

出示:周长相等的长方形,长和宽的差越大,面积就越小;长和宽的差越小,面积就越大。

三、体会策略中的技巧

出示例题2。

读题后问:“最少订阅1本,最多订阅3本”是什么意思?

订阅的方法可以分几类?你准备用什么策略解决这个问题?这三种订阅的杂志可不可以用其它什么来表示?为什么?

小组讨论并集体交流。

展示不同的思考方法:(1)用1、2、3代表不同的杂志。(2)用a、b、c代表不同的杂志。(3)用甲、乙、丙代表不同的杂志。(4)用(0、00、000)代表不同的杂志……

引导:如果只订1本,有几种不同的方法?订1本杂志要分几列?订2本杂志有几种不同的方法?应分几列?3本呢?你是怎样想的?最后怎么看一共有多少种不同的订阅方法?

3+3+1=7种。

师说明:无论你用什么符号来表示这三种杂志,列举之前都要将它们分类。这样会有什么好处呢?

(有一定的规律列举,不重复,不遗漏。)

四、巩固练习

做练一练:一张靶纸共三圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?

问:根据题意你想到了什么?用什么策略解决这个问题?

交流,说出列举思考的过程。

五、交流中总结收获

这节课你最大的收获是什么?“一一列举”对我们解决生活问题有什么好处?

六、课堂练习

做练习十一的第1—3题

教材分析:

解决问题的策略这一单元是采用列表的方法收集,整理信息,并在列表的过程中寻求解决实际生活问题的有效方法。体会解决问题的策略常常是多样的,同一个问题可以用不同的策略,从不同的角度去分析。例1利用学生对长方形与它的长和宽关系的已有认识,要求学生找出用18根1米的栅栏围成长方形的各种方法,在寻找策略中体会“一一列举”的特点和价值。例2是在例1的基础上启发学生用“一一列举”的策略解决实际问题时,要不重复、不遗漏地进行思考过程。在探讨中让学生积极参与,感受解决问题的策略是在具体生活中的运用,从而激发学生主动运用所学到的策略解决简单的实际问题的兴趣。

《解决问题的策略》教学设计 篇3

教学内容

义务教育课程标准实验教科书青岛版小学数学五年级下册第139页的内容。

教学目标

1、让学生经历回顾与探索运用转化策略解决问题的过程,初步感受转化策略的价值。

2、使学生初步学会运用转化的策略分析问题,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

3、使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,获得成功的体验。

教学重点

感受“转化”策略的价值,会用“转化”的策略解决问题。

教学难点

会用“转化”的策略解决问题。

教学过程

课前交流,孕伏转化策略:

教师:同学们,你听说过曹冲称象的故事吗?(听说过)

教师:好的故事总能给人以启迪,从这个故事中,你受到了哪些启发呢?学生自由交流感受,教师适时小结:曹冲能将复杂的事情与简单的事情相转化,从而巧妙的解决了问题,真是有志不在年高,了不起,相信同学们也会有不俗的表现。

一、直观演示,发现转化策略

课件出示:

师:请你仔细观察,认真思考,哪个图形面积大呢?拿出彩色题纸,可以用笔画一画、算一算,想办法比较出哪个图形的面积大?

师:有答案了吗?哪个图形的面积大?谁来说说。

生1:两个图形的面积相等。生2:两个图形的面积相等。

师:你是如何比较出来的?

生:(边演示边说)我们把这块切开放到这块,都变成了长5个格、宽4个格的长方形。

教师注意引导学生说出方法,如何平移、旋转的?

师:听明白了吗?想的巧妙,讲的也非常清楚。谁再来说一说?

师:原来的图形不规则,不容易比较大小。同学们都是利用了图形凹凸的特点想到了这个好办法,非常善于观察、思考。下面我们再来清晰的演示一下这个变化过程。请看,(课件演示)平移,旋转,瞧,哪个图形面积大?(相等)真是一目了然,原来的两个不规则图形通过平移、旋转都变成了规则的的图形。 (板书:不规则图形 规则图形)你们知道吗,这是一种解决问题的策略,这种策略就叫转化(板书课题)

师:这样转化,什么变了?什么没变?

生:周长变了,面积没变。

师:还有什么变了?(形状变了。)

师:你抓住了问题的关键,的确,这样转化,形状变了,面积却没变。(板书:形变积不变)

二、唤醒记忆,回顾转化策略

1.图形面积、体积方面的应用。

师:同学们,其实,在以前的学习中,我们就经常用到转化的策略解决问题,比如说一些图形的面积公式、体积公式的推导,就常常用到转化的策略,你们能想起来吗?自己先想一想,然后跟小组的伙伴交流交流。

师:有的同学迫不及待的想说了,谁来说?

生:在学习图形的面积时,三角形的面积。把两个完全一样的三角形拼成一个平行四边形。

师:这是把一个三角形的面积转化成了平行四边形面积的一半。没错,这就是转化。

师:还有谁想说?

生:把两个完全一样的梯形拼成一个平行四边形。

师:这是把什么转化成什么?

生:梯形转化成平行四边形

师:准确的说,这是把梯形转化成平行四边形面积的(一半)

这也是转化。还有吗?

生:把平行四边行转化成长方形。

生:圆也是把圆分成若干个小扇形,然后再拼成一个近似的长方形。

生:圆柱是把圆柱转化成长方体。

师:这也是用转化解决的新问题。

课件出示:

平行四边形的面积公式推导 三角形的面积公式推导

梯形的面积公式推导 圆的面积公式推导

圆柱的体积公式推导 圆锥的体积公式推导

师:大家来看,我们曾经用转化的策略解决了这么多新问题。选一个你最喜欢的、或者感觉有困难的,同位互相说一说。

2.数与计算方面的应用。

师:从某种意义上来说,学习数学就是不断学会转化的过程。不仅在图形的世界里常常应用转化的策略解决问题,而且,在看似简单的计算中也蕴含着转化,回忆一下,在学习数与计算时,哪些地方用到了转化的策略呢?

生:小数乘法是转化为整数乘法,分数除法是转化为分数乘法来进行计算的……

出示:2.5×0.4 1.25÷0.5

+ ÷

师:请看,这儿有一组题,可以动笔算一算,体会体会转化的作用,看看从中你又能发现什么,然后在小组内交流交流。

(学生活动是巡视关注:是否会表达。)

生:2.5×0.4是把小数乘法转化整数乘法。

生:1.25÷0.5是把小数除法转化除数是整数的除法。

师:说的真好,谁能像他这样,举个例子也说说自己的发现。

生:计算 + ,是把异分母分数转化成同分母分数。

师:说得真完整。

师:很高兴你和大家分享你的发现,重复的`我们就不说了,谁还有不同的发现?

师:在计算这几个题的时候,我们都用到了转化的策略,转化前和转化后有什么关系?

生:得数相同。

师:你可真了不起,一下就抓住了转化的实质,转化前和转化后结果不变。(板书:得数相等)

三、实践应用,体验转化策略

1.巧用转化写分数。

2.巧用转化求周长。

鼓励学生独立做在作业纸上,然后,组织汇报、交流。

师:周长各是多少厘米?有答案了就举手。

师:左边图形的周长是多少?(16厘米)

师:右边图形的周长可有难度了。

生:也是16厘米。

师:你怎么想的?

学生边指边说想法。

师:你是想把这四条边平移是吗?

师:大家来看,他是把这个图形想象成了什么?(长方形)能行吗?

师:我们来看一下(课件演示)真像大家想的那样,这是把什么转化成什么?

生:把不规则图形转化成长方形。

师:这样转化什么变了,什么没变?

生:面积变了,周长没变。

师:还有要补充的吗?

生:形状也变了。

师:咱们同学不仅会观察,还很会想象。我们在用转化策略解决问题的时候观察很重要,想象也很重要。感受到用转化策略解决问题的乐趣了没有?我们再来解决一个问题。

3.巧用转化求面积与周长。(只列式,不计算。)

师:请同学们认真观察,大胆的想象,仔细的思考。要求这个图形的面积,如何转化呢?

师:这么快就会了,谁来说?

生:能转化成一个半圆。

师:怎么转化呀?

生:把那块割下来,补到缺少的那块。

课件演示

师:是这样吗?这样果真就转化成了一个半圆。看来咱们同学用转化解决问题已经得心应手了。不过这个问题要变一下

师:如果要求这个图形的周长,该怎样转化呢?

生1:把左边的半圆平移到右边,转化成一个小圆,用大圆周长的一半加上小圆的周长。

师:还有不同的想法吗?

生2:整个一个图形可以转化成一个大圆。

师:怎么就能转化成大圆的周长?

引导学生思考大小圆之间的关系。

生:大圆的周长是小圆周长的2倍。

师:你怎么知道大圆的周长就是小圆周长的2倍?

生:大圆半径是小圆的2倍,大圆周长也是小圆的2倍,小圆的周长是大圆的二分之一,合起来就是一个大圆的周长。

师:咱们同学们真了不起,想到了不同的转化方法,并且这种转化的方法使问题变得非常简单。

4、巧用转化计算。

出示: + + +

师:继续我们的探索之旅,你准备怎样解决这个问题?做在作业纸上。

生:通分,都变成分母是16的分数。

师:可以。通分也是一种转化,再仔细观察算式,你能发现其中蕴含的规律吗?

生:每个分数的分子都是1,分母依次乘2。

师:你能试着再往下写两个分数吗?

生: + + + + +

提问:如果是这个算式,你还想用通分去做吗?那有没有更简便的方法呢?

课件出示正方形图

引导学生分析涂色部分的大小可以用1减去空白部分的大小,1-

师:明明是个加法算式,怎么变成减法算式了?

生:因为这里还空缺一个 。

师:听明白了吗?这位同学借助图形帮助进行算式的转化,非常善于观察和思考。

5.关注生活。

如何求1张纸的厚度? 如何求1个灯泡的体积?

四、畅谈收获,提升转化策略

师:通过今天的研究探索,你有哪些收获?

学生交流。

师:看来,大家的收获真不少,最后,有两句话想与同学们分享分享。

出示:

解题时,往往不对问题进行正面的攻击,而是将它不断变形,直至转化为已经能够解决的问题。

——数学家路莎彼得

《解决问题的策略》教学设计 篇4

教学内容:

苏教版五年级数学(上册)第94-95页例1及随后的“练一练”,练习十七第1-3题。

教学目标:

1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。

2、使学生在对自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

让学生体会策略的价值,并使学生能主动运用策略解决问题。

教学难点:

在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

教学准备:

课件、小棒、表格。

教学过程:

一、谈话导入。(2分钟)

谈话:同学们,我们以前学到过解决问题的策略,想一想:我们都学过哪些策略啊?(板书:从条件想起,从问题想起,画图,列表)

引入课题:今天我们就继续来学习解决问题的策略。

二、教学例1。(20分钟)

(一)弄清题意,引发需求

1、出示例1:王大叔用22根1米长的木条围一个长方形花圃,怎样围面积最大?

2、(指名读题):从题中你能获得哪些数学信息?你还能发现题目当中隐藏的信息吗(2人答)?(长方形的周长是22米)(掌声)

师:周长一定是22米,是保持不变的,长和宽也会像周长这样保持不变吗?长和宽在变化,那么面积也就有大(顿)有小。

师:长和宽可能会是几米?指名答 (板书: 长: 9 宽: 2 )

他猜得对吗?再指名答理由(2人)。(板书:长+宽:22÷2=11(米) )

设疑:还有不同的围法吗?(有)大家想一想:在这么多围法当中(板书:),要想知道怎样围面积最大,可以怎么做?(把所有围法都列举出来)大家想不想亲自动手来围一围?

(二)尝试列举,感知策略

1、分层提出要求:

?请你用22根小棒摆出不同的长方形,将结果填写在记录单中。

?也可以直接填写记录单,再通过摆小棒来验证自己的猜想是否正确。

学生操作,师注意收集(A:遗漏B:重复C:全但无序D:有序)的'表格进行投影展示。

2、比一比:大家更欣赏哪种记录方法?(D)为什么?(板书:按顺序)按顺序列举有什么好处?(板书: 不重复 不遗漏)

师:这位同学真了不起,掌声送给他。(掌声)

师:请刚才没有按顺序填写的同学改成按顺序填写,老师也来改一改。( 补齐板书:长(m):10 9 8 7 6

宽(m): 1 2 3 4 5 )

7、同学们数数看,一共有多少种不同的围法?(5种)现在你知道怎样围面积最大吗?(长6米,宽5米)你是怎么知道的?

(补齐板书:面积(㎡):101824 2830)看来我们还要对列举出来的结果进行分析、比较,这样才能选出我们想要的。

8、小结揭示课题:像刚才这样把事情发生的所有结果按照一定的顺序一一列举出来,也是一种解决问题的策略,我们通常就称它为“一一列举”的策略。(板书:——一一列举)齐读课题。

(三)反思回顾,加深理解

1、提出要求:回顾刚才解决问题的过程,你有什么体会?(列举能帮助我们解决问题,列举时要有序思考,对列举的结果要进行比较)

2、进一步要求:其实列举的策略同学们并不陌生。大家思考一下:在以前的学习中,我们曾经运用列举的策略解决过哪些问题?小组交流。(如:一年级:10的分与合)

追问:用列举的策略解决问题有什么好处?在列举时需要注意些什么?

过渡:王大叔有个女儿叫小芳,他送给小芳一个礼物,是什么呢?对,小闹钟

三、拓展应用,丰富体验。(16分钟)

1、出示“练一练”第1题。(突出“有序”)

(1)指名读题,指名板演。

(2)学生尝试解答,组织交流反馈:重点让板演的学生说说是怎样列举的。

过渡:你们喜欢学校的饭菜吗?小芳也很喜欢,让我们来看一看小芳所在学校食堂的饭菜情况。

出示练一练第二题。

进行荤菜搭配时,可以按表中的样子从荤菜想起,也可以从素菜开始一一列举,一共有12种不同的搭配。

过渡:小芳有一个爱好是上网,在课余时间经常通过浏览一些网站来增长自己的见识。大家是否知道网站为了及时发布最新的消息,都需要定期更新。我们一起来了解一下。

2、出示“练习十七”第2题。(突出“对结果要比较、观察”)

(1)指名读题,师引导学生观察A网站怎样更新后再提出要求:先在下表里画一画,再回答。

(2)组织交流反馈:重点突出对列举的结果要观察、比较。

联系生活:上网确实很好玩,但同时郑老师也对大家提一个小小的要求:希望大家要做到“文明上网、适度上网”,千万不能沉迷于网络。

过渡:小芳除了喜欢上网之外还有一个爱好是收集邮票,先课件出示4张邮票(师介绍“邮票”,认识邮票面值),再课件出示问题(师介绍“邮资”:就是指邮票的面值之和。)

3、出示“练习十七”第3题。(引出分类列举的思想)

提问:你打算怎样解决这一题?指名回答,生口头说出按怎样的思路来列举即可。

四、总结全课

同学们,这节课我们学了什么策略?你有哪些收获?还有什么要提醒大家的?(列举时需要注意什么)

同学们,在我们的生活中,采用“一一列举”的策略常常可以使复杂的问题变得简单,使混乱的思维变得清晰,这正是我们学习数学的魅力之所在。

《解决问题的策略》教学设计 篇5

教学目标:

1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。

2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

用从条件想起的策略解决问题。

教学难点:

策略的体验和理解。

教学过程:

分了五个环节

第一部分是导入,先出示一个条件,让学生初步体验只有一个条件无法求出问题,接着提供两个条件,让学生选择一个能解决问题的条件,让学生进一步体会只有两个相关联的条件才能解决问题。

第二部分是教学例题,感悟策略。出示例题后重点让学生理解“以后每天都比前一天多摘5个”,用自己的话来说说,从两个角度提炼出了数量关系,然后说解题思路,主要讲清楚根据哪两个条件求出什么,再根据哪两个条件什么。完成填表和列式后沟通了两者的关系,最后总结得出解决问题时我们紧紧抓住条件在思考。揭示课题。

第三环节是变式沟通,形成策略。通过两个变式的教学,让学生加深对策略的感知。接着安排了皮球那道题目,学生对条件的理解是比较困难的,所以我安排了一个动画,帮助学生理解。四个题目结束后,安排了回顾反思,这一环节是新教材比较强调的,让学生在回顾反思中提炼出解决问题的`经验。

第四环节是练习巩固,运用策略。选取了想想做做第一题的第一小题,让学生根据条件提出不同的问题,再解答,最后在分析中提炼出解决问题的第三个小窍门。紧接着请学生独立完成想想做做第4题,第5题。第5题的设计主要考虑到一是学生对游戏比较感兴趣,二是国际象棋是我们学校的特色,三是培养学生估算的能力,四是增加学生的课外知识。

第五环节是课堂总结,交流 收获。回顾学习了什么内容,以及解决问题时是怎样一步步分析的。

《解决问题的策略》教学设计 篇6

教学目标

1、进一步掌握在具体情境中能用列举法解决实际问题。

2、进一步感受使用列举法时的有序性。

3、进一步发展运用数学方法解决生活问题的意识,提高解决问题的能力。

教学准备:教学光盘

教学过程:

一、复习导入

谈话:前两节课我们学习了什么内容?你有什么收获?

二、指导练习

1、完成练习十一第6题。

先让学生说说是怎么想的,然后小结:我们用列举法解决问题时,应当注意些什么?

2、完成练习十一第7题。

指名读题,问:观察表格,你有什么发现?

48个1平方厘米的正方形拼成的长方形周长是多少?你是这样想的?

3、完成练习十一第八题。

指名读题,问:“只是向东、向北走”是什么意思?

指导学生完成:我们可以将直线相交的点用字母代替,列举出所有的'路线,并按一定的顺序列举。

4、完成路线十一第9题。

出示题目,要求仔细读题。

三、完成思考题。

出示思考题,让学生独立完成。(可在书上画一画)并进行集体订正。