六年级《数与形》教学设计
此篇文章六年级《数与形》教学设计(精选5篇),由智远网整理,希望能够帮助得到大家。
六年级《数与形》教学设计 篇1
教学目标:
在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。通过具体的观察,发展数形观念,培养数形结合思想,感受学习数学的乐趣。
教学重点:
通过一些数形结合的实例,使学生感受数形结合思想的优越性。
教学难点:
尝试运用数形结合解决问题。
教学过程:
一、谈话导入
我们学校门口的两侧有两个正方形的草坪,如果我们想在草坪的四周摆上花,你能帮忙算一算,一个草坪最少要摆多少盆花吗?
课件出示:
师:你可以画画图帮助你解决这个问题。
让学生独立做:
师:哪位同学们到前面来给大家说一说你是怎样做的?
还有不同的做法吗?其他的同学也是这样做的吗?
师:刚才同学们在解决这个问题的时候都是通过画图来解决问题的,这样通过画示意图,来解决问题的方法,在数学上叫做数形结合,数形结合就是指数和形之间一一对应的`关系,数形结合是一种很重量的数学思想方法。
二、回顾整理
师:想一想,我们学习哪些知识的时候运用到了数形结合?
课前,老师已经让大家对这部分知识作了整理下面请把你整理的情况先在小组里交流一下,小组长对同学们整理的情况进行归纳整理并做好记录,比一比看哪个小组合作的好,整理的全面。
三、汇报交流
师:谁愿意代表你们小组把你们交流的结果展示给大家看。
学生汇报:
师:你认为这个小组汇报的怎么样?
师小结并及时评价
师:除了在这几个方面用到了数形结合的思想方法,还有哪些方面也用到了数形结合?
生汇报后师小结。
师:你觉得画图有什么好处吗?
还有哪个小组要补充吗?
师:通过同学们的回顾整理,我们发现在学习这么多知识的时候都用了数形结合的方法。
师举例并展示课件
小结:
同学们请看,像数的认识,数的运算,解决问题正比例图像,这都属于数与代数领域的内容,统计图是属于统计与可能性领域。确定位置属于空间与图形领域。看来,我们几乎在学习每一部分知识的时候,都用到了数形结合的思想方法。(示我国的著名的数学家华罗庚先生的名言让学生读一读。)
师:数形结合的方法确实是一种很好的数学思想方法,它能帮助我们把复杂的问题简单化,把抽象的问题直观的、形象化。
四、应用与反思
下面的几道题,你能用数形结合的方法来解决吗?
师:杨晨旭同学准备参加六一儿童节的时装表演节目,你能给她帮帮忙吗?
出示:
学生独立做
汇报评价
师:你认为他的方法怎么样?还有不同的方法吗?
师小结。
出示第二题:
师:有困难的同学同位俩可以商量一下
学生独立做,汇报展示。
师:这道题看着似乎很难,但是一画线段图,一切问题就迎刃而解,数形结合的方法又一次帮助了我们。
出示:1/2+1/4+1/8+1/16=
下面这道题,你能顺利解决吗?
师:你是怎样做的?到前面展示给大家看。
还有同的方法吗?
五、小结:
师:通过这节课的学习,你有什么收获吗?
现在让我们再一次读一读华罗庚先生的这句话。希望同学们在今后的学习和生活中都能用数形结合的方法解决。
六年级《数与形》教学设计 篇2
教学内容:
人教版六年级上册P107例1,P108做一做,练习二十二第2题。
教学目标:
1、通过观察、操作、归纳等活动,学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。
2、学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。
教学重点:
借助“形”感受与“数”之间的关系,培养向上用“数形结合”的思想解决问题。
教学难点:
找到合适的形来表示数和在形中找出数的规律。
教学过程:
一、复习导入:
师:我们已经学过奇数,你还记得哪些数是奇数吗?(PPT出示)
师:相邻的两个奇数之间有什么关系?
今天我们继续研究奇数。(出示加法算式口算得数:1+3,1+3+5)
师:同学们算得真快。(出示:1+3+5+7+9+11+13=)你还能马上报出得数吗?
二、探究新知:
教学例一
师:这条算式中是不是存在一些规律,可以帮助我们快速的计算呢?
复杂的问题都是从简单开始的。我们先来观察一下前面的两条算式。
(一)画图形
1、提示用1个小正方形表示1,那+3就是再加三个一样的小正方形。
出示图片
有几个小正方形?你是怎么知道的?
2、再+5呢?可以怎么摆?
出示图片
(二)形与数对应
为了便于观察,老师给他们都涂上了颜色,是不是更清楚呢?
我们把刚才表示小正方形数的2种算式综合起来,可以用什么号连接?
板书:
1=1的平方
1+3=2的平方
1+3+5=3的平方
小结:这里的正方形直观的解释了数的两种运算,同学们想一想,按照这样的规律,图四会是什么样子,与它配套的算式又是什么样子?同桌合作,画出草图,写出算式。
(三)找规律
观察这些数和形,你有什么发现?
生1:大正方形右上角的小正方形和其他“L”形所包含的'小正方,形数之和正好是每行每列小正方形数的平方
生2:加法算式中的加数都是奇数,(都是从1开始的)
生3:有几个数相加,和就是几的平方
想一想,第10个图中有几个小正方形?第100个图呢?这个规律可以用到所有类似数的计算吗?
只有从1开始的,连续奇数相加时,我们可以转化为求正方形的个数。
(四)总结
刚才的学习中,我们利用数的计算求出了小正方形的个数,反过来正方形也帮助我们理解了计算中各数的含义。
(五)没有图你会计算这几题吗?
(1)1+3+5+7=
(2)1+3+5+7+9+11=
(3)=9的平方
回忆一下,刚才我们是如何学习正方形和它算式之间的联系的?
1、写算式
2、增加图
3、找规律
4、拓展
掌握这个方法,我们可以解决很多问题。
三、练习拓展
P108“做一做”第2题
1、出示问题,生独立观察。
2、小组讨论、发现规律。
3、全班汇报、交流。(PPT展示)
二十二第2题(三角形数)
1、小组合作探究
运用刚才的方法,完成书中P1092题
2、生汇报
(1)写算式
(2)增加图
(3)找规律
形的特点:第几幅图就有几行,最下方就有几个
数的特点:都是从1开始,相邻两数相差1
和的特点:(首行+末行)×行数÷2
(4)拓展第十个图
3、讲解三角形数
由于数量为1,3,6,10……的原片可以组成三角形,数学上,这些数也叫做“三角形数”。那么我们之前学过的1,4,9,16……,这样组成正方形的数,它叫什么呢?正方形数。
其实每个正方形数可以拆成两个不同的三角形数,比如5的平方=10+15。
4、回顾以前涉及的一些数形结合的例子。
四、全课总结
通过这节课的学习,你有什么收获?
通过探索简单的数与形的关系,我们发现了数与形的密切联系。欣赏华罗庚的一首诗:
数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形无数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数统一体,永远联系,切莫分离。”
五、练习
教材第109页第1题。
六年级《数与形》教学设计 篇3
教学内容:
人教版小学数学六年级上册《数与形》107-108页
教学目标:
1、使学生通过自主研究发现图形中隐藏着的书的规侓,并会应用所发现的规侓。
2、使学生会利用图形来解决一些有关的问题。
3、使学生在解决数学问题的过程中,体会和掌握数形结合与归纳推理数学思想。
教学重难点:
1、结合具体实例理解数形结合的思想方法。
2、运用数形结合的方法探索规律,解决实际问题。
教学准备:
学习单(正方形、线段、圆形)
练习纸教学过程:
(一)创设情境
谈话导入:一提到数学一会想到什么?预设:数字、图形、计算……
揭示课题:把你们说的可以分为两类,一类是数,一类是形,今天我们就来研究数与形。
(二)建立模型
一、教学例1师:这是一组图形,你发现他们的规律了吗?请用数或式子表示你发现的规律。
学生独立思考,教师巡视指导:
预设:
1x1=1
2x2=4
3x3=9
4x4=16
1+3=4
1+3+5=9
1+3+5+7=16展示交流:
师:你能说说你是怎么想的吗?预设:
生:我是从小正方形的个数上来想的生:我是从整个图形的面积上来想的生:我是从每次增加的正方形数来想的师:你这种观察的角度有点不一样,我们用不同颜色给区分一下(是将提前准备好的'不同颜色纸条贴到黑板上)
虽然我们观察的角度不同,但是这三种方法都能表示这组图形的规律,是不是?
生:是
师:我们把这三种方法整理一下,来看黑板,1x1还可以写成12,1=12,2x2=22=+3=4,所以1+3=22,1+3+5=32,+3+5+7=42。
师:那你觉得图形中有数的影子吗?生:有
师:那我们继续研究,大屏幕出示图形,你能知道这个图形对应的式子是什么吗?
生:1+3+5+7+9=52
师:你知道1+3+5+7+9+11这个式子对应什么样的图形吗?生:边长为6的正方形
师:是不是这样呢?我们来看大屏幕
师:我们能从图形中看到数的影子,从数中又能发现图形,那你们觉得数与形有关系吗?生:有
师:那我们继续研究:
1、先观察这些式子的左边有什么特点?
2、再从左往右依次观察这些式子你有什么发现?师:先独立思考,在把你的想法和同桌交流汇报交流:
小结:从1开始连续相加奇数的和等于奇数个数的平方。练习:1+3+5+7+9+11+13+15+17+19= 1+3+5+7+9+11+13+11+9+7+5+3+1
六年级《数与形》教学设计
作为一位兢兢业业的人民教师,就不得不需要编写教学设计,借助教学设计可以更好地组织教学活动。那么什么样的教学设计才是好的呢?以下是小编帮大家整理的六年级《数与形》教学设计,希望能够帮助到大家。
六年级《数与形》教学设计 篇4
教学内容:
人教版六年级上册P107例1,P108做一做,练习二十二第2题。
教学目标:
1、通过观察、操作、归纳等活动,学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。
2、学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。
教学重点:
借助“形”感受与“数”之间的关系,培养向上用“数形结合”的思想解决问题。
教学难点:
找到合适的形来表示数和在形中找出数的规律。
教学过程:
一、复习导入:
师:我们已经学过奇数,你还记得哪些数是奇数吗?(PPT出示)
师:相邻的两个奇数之间有什么关系?
今天我们继续研究奇数。(出示加法算式口算得数:1+3,1+3+5)
师:同学们算得真快。(出示:1+3+5+7+9+11+13=)你还能马上报出得数吗?
二、探究新知:
教学例一
师:这条算式中是不是存在一些规律,可以帮助我们快速的计算呢?
复杂的问题都是从简单开始的。我们先来观察一下前面的两条算式。
(一)画图形
1、提示用1个小正方形表示1,那+3就是再加三个一样的小正方形。
出示图片
有几个小正方形?你是怎么知道的?
2、再+5呢?可以怎么摆?
出示图片
(二)形与数对应
为了便于观察,老师给他们都涂上了颜色,是不是更清楚呢?
我们把刚才表示小正方形数的2种算式综合起来,可以用什么号连接?
板书:
1=1的平方
1+3=2的平方
1+3+5=3的平方
小结:这里的正方形直观的解释了数的两种运算,同学们想一想,按照这样的规律,图四会是什么样子,与它配套的算式又是什么样子?同桌合作,画出草图,写出算式。
(三)找规律
观察这些数和形,你有什么发现?
生1:大正方形右上角的小正方形和其他“L”形所包含的小正方,形数之和正好是每行每列小正方形数的平方
生2:加法算式中的加数都是奇数,(都是从1开始的)
生3:有几个数相加,和就是几的平方
想一想,第10个图中有几个小正方形?第100个图呢?这个规律可以用到所有类似数的计算吗?
只有从1开始的,连续奇数相加时,我们可以转化为求正方形的个数。
(四)总结
刚才的学习中,我们利用数的计算求出了小正方形的个数,反过来正方形也帮助我们理解了计算中各数的含义。
(五)没有图你会计算这几题吗?
(1)1+3+5+7=
(2)1+3+5+7+9+11=
(3)=9的平方
回忆一下,刚才我们是如何学习正方形和它算式之间的联系的?
1、写算式
2、增加图
3、找规律
4、拓展
掌握这个方法,我们可以解决很多问题。
三、练习拓展
P108“做一做”第2题
1、出示问题,生独立观察。
2、小组讨论、发现规律。
3、全班汇报、交流。(PPT展示)
二十二第2题(三角形数)
1、小组合作探究
运用刚才的方法,完成书中P1092题
2、生汇报
(1)写算式
(2)增加图
(3)找规律
形的特点:第几幅图就有几行,最下方就有几个
数的特点:都是从1开始,相邻两数相差1
和的.特点:(首行+末行)×行数÷2
(4)拓展第十个图
3、讲解三角形数
由于数量为1,3,6,10……的原片可以组成三角形,数学上,这些数也叫做“三角形数”。那么我们之前学过的1,4,9,16……,这样组成正方形的数,它叫什么呢?正方形数。
其实每个正方形数可以拆成两个不同的三角形数,比如5的平方=10+15。
4、回顾以前涉及的一些数形结合的例子。
四、全课总结
通过这节课的学习,你有什么收获?
通过探索简单的数与形的关系,我们发现了数与形的密切联系。欣赏华罗庚的一首诗:
数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形无数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数统一体,永远联系,切莫分离。”
五、练习
教材第109页第1题。
六年级《数与形》教学设计 篇5
教学目标:
使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。
使学生在解决数学问题的过程中,感受数形结合思想的魅力。
学习目标:
探索利用图形直观解决计算的优越
感受用算式表达图形规律的优越
一、激情导课
师:这个周末老师又学了一招,想知道吗?我能很快的算出从1开始的连续奇数相加的结果,如1+31+3+5+7等等,信不信,现在就由你来出题,我来算,看看快不快?为了证明答案是否正确,带计算机的同学可以拿出来验证结果。
活动开始:老师板书的同时说出答案。
怎么样?是不是特快?想知道我是怎么算出来的吗?我直接告诉你答案,还是你们自己研究?现在我可以给你告诉一个小小的提示,我是通过图形来发现规律的。
板书:形同时说这节课咱们就来学习“数与形”,完成板书
二、民主导学
任务一:通过数形结合,探索从1开始的连续奇数之和与“正方形数”的关系
任务呈现:
(我是通过观察图形和算式之间的关系发现的,你来试一试。)
观察,上面的图形和下面的算式有什么关系,把算式补充完整。图形和算式对照,说说你的发现。
展示交流:
(那个小组最先给我们说说你们的发现呢?先说第二道)
展示时,老师要具体问问算式左边的加数和右边的平方数是怎么来的?(1在哪?3在哪呢?平方数代表图中的什么呢?)
预设发现:
我发现,算式左边的加数是大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数之和正好是每行或每列小正方形个数的平方。
我发现,从1开始的连续奇数的和正好是这串数个数的平方。
想一想,1+3+5+7又会是什么样子呢?
现在你是不是也能向老师一样算的快了呢?试一试
任务二:利用规律填一填
1+3+5+7=
1+3+5+7+9+11+13=
()=9的平方
1+3+5+7+5+3+1=
展示交流:
说说你是怎么算的.?
小结:这么巧妙,简单的办法我们是怎么发现的呢?(借助图形)。看来借助图形能巧妙的帮助我们解决计算问题。那么图形的问题会不会蕴藏着数的规律呢?
板书数-----------形
任务三:发现图形中的数字规律
任务呈现:课本练习二十三的第二题
自主学习:
先自己思考,再与同桌交流你的想法。
展示交流:
预设:
小组展示:我们组发现了后一个图片总比前一个图片多一行,
第二个图比第一个图多2个,第三个图比第二个图多3个,以此类推。
第一个图有一行就是1,第二个图有两行,就是1和2,有几行,就从1开始排到几,如第五个图,有5行,分别是1、2、3、4、5。可以用1+2+3+4+5=15来计算。
第10个数就是从1连续加到10的和,所以算式就是1+2+3+4+5+6+7+8+9+10=55
小结:像刚才这些数量为1、3、6、10、15、55的圆片可以组成三角形,所以,这些数也叫做“三角形数”,回过头来看看刚才的例一的那些数,你想到了什么?(1、4、9、16、100等等正方形数)
数和形真是一对好朋友,数形结合能帮助我们解决好多数学问题,其实在以前的学习中,我们就有由体会。
课件呈现
怪不得,我们的数学家华老这样说,数形结合百般好,隔离分家万事休。
三、检测导结
课本108页的做一做