《运算定律与简便计算》教学反思
此篇文章《运算定律与简便计算》教学反思(精选3篇),由智远网整理,希望能够帮助得到大家。
《运算定律与简便计算》教学反思 篇1
满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!
到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。
这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的`练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。
然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!
这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。
《运算定律与简便计算》教学反思 篇2
到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的.学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。
这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。
然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!
这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。
《运算定律与简便计算》教学反思
作为一位到岗不久的教师,我们要在课堂教学中快速成长,通过教学反思可以有效提升自己的课堂经验,快来参考教学反思是怎么写的吧!以下是小编收集整理的《运算定律与简便计算》教学反思,仅供参考,大家一起来看看吧。
《运算定律与简便计算》教学反思
作为一名人民老师,教学是我们的任务之一,借助教学反思我们可以学习到很多讲课技巧,来参考自己需要的教学反思吧!以下是小编为大家收集的《运算定律与简便计算》教学反思,欢迎阅读与收藏。
《运算定律与简便计算》教学反思 篇3
教材安排的顺序是加法运算定律---乘法运算定律---简便计算。这样安排,虽然可以按四则运算进行归类,但是对运算定律的类比推理不利。教学时,可以根据运算定律的类比进行安排教学内容,以促进教学效果的更加有效。
一、调整教材顺序,促进有效教学
乘法交换律与加法交换律有着相似之处,都是交换数的位置进行运算,结果不变。乘法的结合律的教学可以与加法的.结合律的教学安排在共一课时。
学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出交换两个加数的位置,和不变,这叫加法交换律。然后再安排教学乘法交换律,让学生通过举例说明,得出ab=ba,再通过对加法交换律概念的类比,推理出交换两个因数的位置,积不变,这叫做乘法交换律。再以同一课时或者前后课时,安排教学加法结合律与乘法结合律,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出先把前两个数相加,或后两个数相加,和不变这叫做加法结合律。教学乘法结合律时,再通过具体事例得出abc=a(bc),再对加法结合律的概念的类比推理,得出先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
960025496002549600254
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8(125982)=8125982
乘法分配律:8975+8925=89(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350(72)=35072
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a(bc)=abc的运用在有帮助。因此逆向运用的训练,很有必要。
《运算定律与简便计算》教学反思范文(精选3篇)
身为一位优秀的老师,我们都希望有一流的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,优秀的教学反思都具备一些什么特点呢?下面是小编为大家收集的《运算定律与简便计算》教学反思范文(精选3篇),仅供参考,大家一起来看看吧。