返回首页
智远网 > 短文 > 教案 > 正文

分解因式的教学反思

2025/09/30教案

此篇文章分解因式的教学反思(精选6篇),由智远网整理,希望能够帮助得到大家。

分解因式的教学反思 篇1

因式分解这部分的内容是八年级数学第一学期重难点,也是初中阶段必考易错的知识点,也是难点,学习时节奏应该放慢一些,讲课的时候是一节课讲一种方法,先分析符合条件的形式再练习,主要是以练习为主。我以为学生的掌握程度还好。就出了一些综合性的练习题,此时才发现效果是不太好的。

课后,我总结的原因有以下四点:

1、思想上不重视,因为对于公式的互换觉得太简单,只是将它作为一个简单的内容来看,所以课后没有以足够的练习来巩固。

2、在学习过程中太过于强调形式,反而如何创造条件来满足条件忽略了。导致他们对于与公式相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手。

3、灵活运用公式(特别与幂的运算性质相结合的`公式)的能力较差,

4、因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止。

因式分解是一个重要的内容,也是难点,我认为我对教材内容的调整是比较适合的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学进度,多发现学生在学习方面的优势和不足之处。

分解因式的教学反思 篇2

一、试卷总体评价

整张试卷以新课程标准的评价理念为指导,以新课标教材为依据,特别在依据北师大版本教材的基础上,又参考了苏科版教材,实现了第二次教材改革的平稳过渡。试卷起点低,坡度缓,给了更多学生成功的体念。突出的特点有:

1、知识点考查全面。让题型为知识点服务,而不是本末倒置,一味的求奇求趣。对基本知识和基本技能的考查,由证明(二)、证明(三)到一元二次方程,到视图与投影,每一个知识点无不被囊括其中,真正做到了全面出击;

2、注重数学思想方法和动手能力的考查。卷中多次出现了翻折(填空第9题,解答题第24题)、拼图(解答题第21题)、动点问题(填空第10题)、分段收费(解答题第23题)等等,无一不反映了出卷者对重要的数学思想理念、数学思想方法的理解和感悟;特别是填空第4题,又小又到位,对因式分解法做了更进一步的考查;

3、加强了课程改革内容的考查。卷中在填空、选择以及第三大题里反复考查了视图与投影知识,考查分数达到了20分,比重明显加大;

4、逻辑推理回归自然。数学在走过了万水千山之后,终于回归自然,恢复了它本身的独特,这不仅让人有些感慨:数学在追求完美的过程中是否曾经丧失了自我?整张试卷共考查了两道证明题,第20题实现了等腰三角形性质和判定使用的完美结合,同时对全等三角形的判定易错点进行了考查;第22题考查四边形问题,但出卷者能反弹琵琶,把平行作为结论来证,既避开了思维定势,又引导学生严密地论证问题,对学生的基本推理能力做了全面细致的考查,让我们重新拾回了数学的原始风情,领略了数学之美。

但美中不足的`是,该套试卷居然抄袭了18分的原题,而且一字不动,连数据也一模一样,这给本来公平的考试蒙上了不公平的阴影;最主要的是它给了应试者可以猜题的误导。另外,整张试卷的层次不是特别分明,有平均着墨的嫌疑,缺少区分度。

二、各题得分情况分析

我校共有12个班级,664名学生参考,校平均:77。4,合格率:81。8,优秀率:50。5,各项指标都走到了历史的低谷。但各班之间差距不大,其中班级最高平均分:79。89,最低平均分:74。31,差距5。58分;合格率最高为:86。79最低为:75,相差10。21,优秀率最高为:53。57,最低为37,差距15。43,在这次考试中,师生投入了较大的精力,学生的潜力已充分挖掘,若要取得更进一步的成绩,则需付出更多的人力、物力、和精力。下面是我们的一些统计数据:(数据来源:三(4)、三(5)班,人数:110)

分数段0—4040—6060—7575—8585—9595—100人数51121193222百分率4。,5℅10℅19。1℅17。3℅29。1℅20℅从以上数据来看,我们学校的补差工作已经取得了可喜的成绩,但后备力量明显不足,其中60——75这个分数段的学生太多,他们在考试中还属于危险分子,倘若我们能把这一部分学生的潜力挖掘出来,那后面的差生将失去市场,学校成绩将会有一个大幅度提高。各题得分情况统计(单位:℅)题号123456789101112得分率92。681。583。442。5994。962。9696。370。3770。3742。5996。368。52题号131415161718192021222324得分率81。4892。l5992。4996。393。796。387。9638。8983。761。4252。3174。8

从以上统计数据可以发现,我们的学生在逻辑推理方面相当欠缺,在问题的实际应用方面还没有完全开窍,至于动手操作方面,学生虽然具备了一定的意识,但仍然是今后教学努力的重点。

三、典型错题分析

1、填空题的错误主要集中在第4和第10两小题上,第4题用已有知识解决陌生问题,考题的立意非常好,但中下等学生的能力没达到,导致失分;第10小题,把动点和平行四边形巧妙的结合起来,既考查了学生的运动观点,又考查了学生对平行四边形判定的掌握情况,属于基础题,但部分学生由于审题不清,错把P点的运动时间当作Q点的运动时间,致使失分严重;另外,填空第6涉及到作图后使用相似、第8是个结论开放性问题,第9是图形变换问题,这几题的失分仅次于第4和第10题;

2、选择第12、13错误较多,反映了学生对概念理解的不到位,特别是对文字语言叙述的选项存在较大的恐惧心理;

3、第20、22两道证明题,学生失分情况比预计的严重,特别是语言的严密性,解答的规范性,以及合理使用条件的能力,在学生身上都体现得较差,学生的证明有点象他们在家里的处世方法:要风得风,要雨得雨,需要什么条件就拿来为我所用,而不顾及题目本身的要求;

4、第23题的第一空,很多同学把10也加上去,导致错误;第2小问有的同学看不懂表格而列错方程或验根错误,考查形式比直接列方程解应用题要好。但由于是原题,有的班级在考前讲到了,导致学生之间差距较大。

四、今后努力的几个方向

1、坚持能力培养的方向不变。学生的能力是他们今后立身社会的根本,在数学教学中对学生进行各种能力的培养一方面是我们不可推卸的责任,另一方面我们也看到了它的可操作性,比如试卷第21题拼图,第24题翻折,第19题视图等等,学生完成的情况较好,说明我们课改下的学生在识图,动手操作,空间想象等方面的能力已经得到了明显提高,只要我们能够静下心来,真心实意的投入到课改当中,相信我们的学生在将来会有更强的生存能力和竞争优势;

分解因式的教学反思 篇3

因式分解与整式乘法是逆向变形,能熟练地对一个代数式进行因式分解,是学好数学的重要方法,通过这段时间的教学,对学生存在的问题归纳如下:

问题一:提公因式不彻底或提公因式后丢项。

问题二:应用公式分解因式,公式应用不正确。

问题三:分解因式不彻底。

问题四:因式分解与整式乘法相混淆。

问题五:代数式不能灵活的分解或灵活应用。

解决以上问题,必须明确两个原则

第一、 有因式分解要先提取公因式。

第二、 每个因式要分解到不能再分为止。

关键要做到以下几点:

1、 什么是公因式,提公因式提什么?

公因式的概念要叫学生明确,公因式是各项系数的最大公约数与各项所合相同字母的最底次幂的积。

方法是:提取公因式是要先找到公因式,再把各项写成公因式和某个式子的`积形式。再根据乘法分配律分解因式。

2、 讲清公式,应用时,

一要判断;二要化成公式形式。三明确谁相当于公式中的第一个数,谁相当于公式中的第二个数。再应用相应的公式进行因式。

3、对于较难多项式要提醒学生要细心观察或分组或先整理再进行分解因式,应用了以上的方法,这段时间的教学取得了一定的成绩,但也有不足。因此,在今后的教学中要多留心提示学生对因式分解的应用。

分解因式的教学反思 篇4

本节课的教学目标是让学生理解一元二次方程的根与二次三项式因式分解的关系,掌握公式法分解二次三项式。在教学引入中,通过二次三项式因式分解方法的探究,引导学生经历:观察思考 归纳 猜想 论证等一系列探究过程,从而让学生领会和感悟认识问题和解决问题的一般规律:即由特殊到一般,再由一般到特殊,同时培养了的学生动手能力和观察思考和归纳小结的能力。另一方面通过运用一元二次方程根的知识来分解因式,让学生体会知识间普遍联系的数学美。

总的来说,建立在对所任教的学生仔细分析和对教学大纲认真研究基础上所作的教材处理和教学预设是贴近学生实际的,经过这节课的学习,学生较好的'达到了教学目标的要求,较好的完成了教学任务,教学效果良好。此外,整节课比较好地体现了多媒体在教学上的辅助作用,特别是实物投影仪的运用可以直观快捷地把学生的练习情况反映在全班学生面前,这些都大大提高了教学效率,增大了教学容量,取得了良好的教学效果。

但本节课也有许多不足之处,如:

1、可以压缩第1部分,四道题目可以减半,这样可以节省一些时间,让课堂小结更充分些。

2、作业布置这一教学环节作为重要的一环应放入课堂上。

3、模仿练习的题目应该把分解好的部分乘出来看是否与左边相等,做好返回检验的工作,这样更便于学生的理解。

在今后的教学中应该更好更深刻的研究教材、研究教法、研究我们的学生,备课更充分、更完善些,从而更好的提高课堂教学的有效性。

分解因式的教学反思 篇5

一、 教学设计及课堂实施情况的分析:

本课的教学目的是:

1。 能够正确理解因式分解的概念,知道它与整式乘法的区别和联系。

2。 通过学生的自主探索,发现因式分解的基本方法,会用提公因式法把多项式进行因式分解。

教学重点是:因式分解的概念,用提公因式分解因式。

教学难点是:正确找出多项式中的公因式和公因式提出后另一个因式的确定。

教学过程为:

在引入“因式分解”这一概念时是通过复习小学知识“因数分解”,接着让学生类比得到的。此处的设计意图是类比方法的渗透。

因式分解与整式乘法的区别则通过把等号两边的式子互相转换位置而直观得出。

在学习提取公因式时首先让学生通过小组讨论得到公因式的结构组成,并且引导学生得出提取公因式法这一因式分解的方法其实就是将被分解的多项式除以公因式得到余下的因式的计算过程。此处的意图是充分让学生自主探索,合作学习。而实际上,学生的学习情绪还是调动起来了的。通过小组讨论学习,尽管语言的组织方面不够完善,但是均可以得出结论。

接着通过例题讲解,最后让学生自主完成练习题,老师当堂批改当堂讲评。

上完本课,教学目的能够完成,教学重难点也能逐个突破。

二、不足之处:

本课的设计,过多强调学生用高度抽象的语言来描述概念。教学设计引入的过程可以简化。对于因式分解的概念,学生可通过自己的'一系列练习实践去体会到此概念的特点,故不需在开头引入的地方多加铺垫,浪费了一定的时间。在设计的时候脚手架的搭建层次也不够分明。

三、教学机智方面:

教学过程中,能做到及时向学生反馈信息。能走下讲台,做到课内批改大部分学生的练习,且对于个别学习本课新知识有困难的学生能单独予以辅导。在批改过程中,发现大部分学生都做错及存在的问题能充分利用多媒体向学生展示,或是马上板演为全体学生讲解清楚。教学过程中,教学基本功比较扎实。

分解因式的教学反思 篇6

一元二次方程是整个初中阶段所有方程的核心。它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的'解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。本节课较好地完成了教学目标,同时还培养了学生看书自学的能力,取得较好的教学效果。

老师提示:

1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

2.关键是熟练掌握因式分解的知识;

3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.