返回首页
智远网 > 短文 > 教案 > 正文

《因数与倍数》教学设计

2025/10/17教案

此篇文章《因数与倍数》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《因数与倍数》教学设计 篇1

教学过程:

一、创设情境,引入新课

师:人与人之间存在着许多种关系,你们和你们的妈妈之间是什么关系……?

生、母子、母女关系。

师:我和你们的关系是……?

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

二、认识因数与倍数

师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘法算式。

根据学生的汇报板书:

1×12=12 2×6=12 3×4=12

12÷1=12 12÷2=6 12÷3=4

师:在这3组乘算式中,都有什么共同点?

生:第①组每个式子都有1、12这两个数。

生:第②组每个式子都有2、6、12这三个数。

生:第③组每个式子都有3、4、12这三个数。

师:(指着第②组)像这样的乘式子中的三个数之间的关系还有一种说法,你们想知道吗?请看大屏幕

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

师:可以说12是12的因数吗?

生:我认为可以,12×1=12,1和12都是12的因数。

师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

师出示:12÷2=5……2。问:12是2的倍数吗?为什么?

生:我认为不是,因为12除以2有余数。

师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?

生:2×4=8,2和4是8的因数,8是2和4的倍数。

生:40÷2=20,40是2和20的倍数,2和20是40的因数。

师出示:0×3 0×10

0÷3 0÷10

通过刚才的计算,你有什么发现?

生:我发现0和任何数相乘,都等于0。

生:0除以任何一个数都等于0。

生:我补充,0不能作为除数。

师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

师:这个问题提得好!谁能回答他的问题?

生:我觉得好像不一样,但不知道为什么?

生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能混哦!

三、师生交流、合作探究:

1。出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数不止一个,那么我们一起找找看18的因数有哪些?

学生尝试完成并交流汇报,说说你是怎么找的?(18的因数有:1,2,3,6,9,18)

我们在写的时候怎样写才能做到不遗漏、不重复?。

(生:用乘法一对一对找,如1×18=18,2×9=18…;用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…)

5。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?(从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。)

四、“动脑筋出教室”游戏课件

五、课堂练习

1、请你来做小法官

(1)4×9=36,所以36是倍数,9是因数( )

(2)48是6的倍数。 ( )

(3)在13÷4=31中,13是4的倍数。 ( )

(4)6是36的因数。 ( )

(5)在4x0。5=2中,4和0。5是2的因数。 ( )

2、细心填一填

(1)、1的因数是( )

(2)、一个数的最大因数是24这个数是()它的.最小的因数是()。

(3)、自然数32有()个因数,它们是( )。

(4)、16的因数有( )

(5)、19的因数只有( )和( )。

3、我最聪明,我来回答

(1)、27的因数有哪些?

(2)、27是哪些数的倍数?

六、课时小结:

本节课大家学习到什么知识,还有什么不明白的地方吗?有什么疑问请提出来我们共同来解决。

七、板书设计

因数和倍数

1×12=12 12÷1=12

2×6=12 12÷2=6

3×4=12 12÷3=4

因为:a×b=c,(a,b,c都是不为0的整数)

所以:a,b都是c的因数,c是a,b的倍数

教学内容:

《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。

教学目标:

1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:

理解因数和倍数的含义。

教学难点:

能准确、全面的求一个数的因数。

教学反思:

教学《因数和倍数》,这是一个非常枯燥的课题,但我巧妙地运用生活中人与人之间的关系,自然引入到数与数之间关系。为了让学生理解因数和倍数的含意,教学过程中,我立足体现一个“实”字,充分应用多媒体的优点,学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。

在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都在愉快中学会了这节课的知识。

《因数与倍数》教学设计 篇2

教学目标:

1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。

2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

教学重点

理解因数和倍数的含义,知道它们的关系是相互依存的。

教学难点

探索并掌握找一个数的因数的方法。

教学准备:

12个小正方形片、每个学生的学号纸。

教学过程设计:

一、认识倍数、因数的含义

1、操作活动。

(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。

(2)整理、交流,分别板书4×3=1212×1=126×2=12

2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。

3、今天我们就来研究倍数和因数的知识。

(揭示课题:倍数和因数)

(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?

指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?

小结:倍数和因数是指两个数之间的关系,他们是相互依存的。

(2)出示:20×3=60,36÷4=9。同桌相互说一说谁是谁的倍数?谁是谁的因数?

指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。

二、探索找一个数倍数的方法。

1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。

2、提问:什么样的数是3的倍数?你能按从小到大的顺序有条理的说出3的倍数吗?能全部说完吗?可以怎么表示?

3、议一议:你发现找3的倍数有什么小窍门?

明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。

4、试一试:你能用学会的窍门很快地写出2和5的`倍数吗?

生独立完成,集体交流。注意用……表示结果。

5、观察上面的3个例子,你发现一个数的倍数有什么特点?

根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。

6、做“想想做做”第2题。

学生填表后讨论:表中的应付元数是怎么算的?有什么共同特点?你还能说出4的哪些倍数?说的完吗?

二、探索求一个数因数的方法。

1、学会了找一个数倍数的方法,再来研究求一个数的因数。

你能找出36的所有因数吗?

2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。

3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?

4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)

板书:(有序、全面)。正因为思考的有序,才会有答案的全面。

5、试一试:请你用有序的思考找一找15和16的因数。

指名写在黑板上。

6、观察发现一个数的因数的特点。

一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。

7、“想想做做”第3题。

生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。

四、课堂总结:学到这儿,你有哪些收获?

五、游戏:“看谁反应快”。

规则:学号符合下面要求的请站起来,并举起学号纸。

(1、)学号是5的倍数的。

(2、)谁的学号是24的因数。

(3、)学号是30的因数。

(4、)谁的学号是1的倍数。

思考:

1、倍数和因数是一个比较抽象的知识,教学中让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义

2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初

步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。

在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。

3、P71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。

5、教材P72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。

为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。。

《因数与倍数》教学设计 篇3

教学目标

1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数,学生能了解一个数的因数是有限的的;通过学习使学生掌握找一个数的因数的方法,能熟练地找一个数的因数。

2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3、在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

学情分析

学生在已学过整数除法的基础上进一步学习因数与倍数,理解因数和倍数的含义,掌握找一个数的因数的方法,能熟练地找一个数的因数。这节课这些知识点都是新知,教师需要在具体的教学活动中去感知辨析。

教学重点

理解因数和倍数的含义,会找一个数的因数。

教学难点

掌握找一个数的因数的方法,能熟练地找一个数的因数。

教学过程

一、导入

课前交流:课开始之前,与学生交流人与人之间的关系。

师:在家里你和爸妈之间是什么关系?在学校我和你们的关系是?

师:对,我们是师生关系,我是你们的老师,你们是我的学生。人与人之间的关系是相互依存的,不能单独存在。在数学这个大家庭里也存在着有这样相互依存关系因数和倍数,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

二、理解掌握因数和倍数的意义

(一)复习导入

教师用课件出示教材第5页例1,

教师:这些除法算式有什么相同点?生:被除数和除数都是整数。

引导学生观察图上的算式,把这些算式分为两类。

学生说出自己的分类方法,商是整数没有余数的分为一类,商不是整数的分为一类。

(二)因数和倍数的意义

1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

教师以商是整数的第一题为例说明,板书:12÷2=6。教师:12÷2=6在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2的倍数,2是12的'因数。再交换除数和商的位置得12÷6=2,得出12是2和6的倍数,2和6是12的因数、

2、说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。

学生通过说一说其他的式子,理解在没有余数的整数除法中,被除数、除数和商之间的倍数与因数关系。

三、因数与倍数的关系

1、通过刚才同学们的回答,你发现了倍数与因数的关系是什么?

教师板书:因数与倍数是相互依存的。

2、用字母式子表示因数和倍数关系

学生同桌举例,并说出谁是谁的因数,谁是谁的倍数。

教师:在自然数中像这样的例子还有很多,举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

a×b=c,那么a和b是c的因数,c是a和b的倍数。(板书)

这里的a、b、c都是什么数,是自然数吗?非0自然数(板书)

3、注意:为了方便,我们在研究因数和倍数时,所说的数指的是自然数,而且一般不包括0。

4、下面的说法对吗?说出理由。

(1)因为20÷4=5,所以4和5是因数,20是倍数。

(2)因为7×4=28,所以7和4是28的因数,28是7和4的倍数。()

(3)13是13的因数。

(4)因为18÷1.8=10,所以1.8是18的因数,18是1.8的倍数。()

四、找因数的方法

1、出示例2:18的因数有哪几个?

自己找一找、写一写,在练习本上把算式记录下来。

学生尝试完成后汇报:(18的因数有:1,2,3,6,9,18)

教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

借助数轴来看18的因数是怎样快速地找到的。

找因数的方法:从小到大,一对一对有序地找,当下一对因数与前一对因数重复时就不要找了。

教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的,或一对一对地写,其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。

2、对口令,找因数

20的因数有:1,2,4,5,10,20

36的因数有:1,2,3,4,6,9,12,18,36

举错例(1,2,3,4,6,6,9,12,18,36)

教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

24的因数有:1,2,3,4,6,8,12,24

1的因数有:1,11

仔细看看,36的因数中,最小的是几,最大的是几?

3、你发现了什么?

(1)一个数的最小的因数是1,最大的因数是本身;

(2)一个数的因数个数是有限的;

(3)1是所有非零自然数的因数。

五、课堂作业

猜猜我是谁:

(1)我是所有非0自然数的因数;

(2)我的最大因数是12;

(3)我比5小并且有3个因数;

(4)我只有1个因数。

六、你知道吗?

了解完全数。

七、课堂小结

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

《因数与倍数》教学设计 篇4

师:在写12的因数时,我们可以一对一对的写,(课件出示: 1、12、2、6、3、4. )也可以从两头开始写(板书:1、2、3、4、6、12.)找全了画一个句号。

3、过渡:12的因数我们已经会找了,那么你能用学到的知识找到18的因数吗?试一试,看谁能挑战成功!

学生尝试,独立在本上完成。

教师巡视,找出几个问题学生和完全写对的学生的作业,在视频台上展示。

学生说如何找全的方法,强化“有序”“一对一对的找”。

板书:18的因数有:1,2,3,6,9,18。

集合图的形式表示。(课件出示)

4、及时反馈:写自己学号的因数。

学生在学号纸上独立完成,指名板演2的因数,24的因数,25的因数,1的因数。

做完的同学,互相检查纠错。

师:谁刚才帮别人找到错误了?(评价:你已经熟练的掌握了找因数的方法,真棒!还有谁是最棒的?祝贺你们)

师:现在我们来看这些数的因数,个数有多有少,最少的是谁?(“1”)最大最小都是它自己。“2”的最小因数是几?最大因数是几?谁还能像老师这样说一说?

学生说出“24”和“25”的最小因数和最大因数各是多少。

通过找这些数的因数,从中你发现了什么?学生回答:一个数的最小因数是1,最大因数是它本身。

其他同学根据发现的规律自己检验,并用彩笔圈起来。

小结:虽然一个数,它因数的个数有多有少,但最小的因数是1,最大因数是它本身。1的因数只有1。因为一个数的因数有最大和最小,所以个数是有限的。(板书在表格里)。

四、找一个数的倍数。

1、过渡:我们已经学会了找一个数的'因数,那么怎样找一个数的倍数呢?你能像找一个数的因数那样有序的找吗?相信这个问题也一定难不倒大家,咱们先来试一个简单的,找2的倍数,看你能找多少个。

2、学生独立找,找好后在小组中交流。

3、汇报展示,交流方法。

引导:你能按从小到大的顺序找2的倍数吗?能写得完吗?怎么办?

明确方法:用2分别乘1、2、3、4……得到的积都是2的倍数。

4、表示方法:2的倍数有2,4,6,8,10,…(一般写完前5个,就可以用省略号表示);集合图。

5、写出自己学号的倍数。

学生独立完成,指名两生板演(3的倍数,5的倍数,1的倍数),纠正错误。

小组合作:在找一个数的倍数时,你有什么发现?

交流汇报:一个数的最小倍数是它本身,没有最大的倍数,个数是无限的。

《因数与倍数》教学设计 篇5

教材分析

“底和高”是在认识三角形、平行四边形、梯形之后进行的教学内容,以此来进一步认识三角形、平行四边形和梯形的特征,也为后续学习图形的面积计算打下基础。本课时内容以直角以及垂直为知识基础,以三角形、平行四边形和梯形的认识为认知背景,教材利用一块平行四边形的木板做成一张尽可能大的长方形桌面作为认知情境,展开自主活动,让学生主动积累高的表象,并形成高的概念。值得注意的是:本课时认识的高主要指图形内的高,而对于图形外的高不作要求

教学目标

1.通过动手把一块平行四边形木板做成一长尽可能大的长方形桌面等相关活动,找到高这条特殊线段,体验高的基本特征;

2.能判断、画出、测量三角形、平行四边形、梯形的高;

3.在方格纸上根据图形的高和底的数据画符合条件的图形。

教学重点:

判断、画出、测量三角形、平行四边形、梯形的高

教学难点:

在画一个图形高的过程中对高的概念的.运用

教学准备

(平行四边形、三角形、梯形)卡片、剪刀、三角板

教学过程

(一)谈话导入

1、教师:请同学们说说你们家的餐桌是什么形状的?还见过什么形状的餐桌?

学生:圆形、椭圆形、长方形、正方形……

2、教师:说得很好!老师就特别喜欢方形的餐桌,而且老师有个习惯,自己能做到的事情就尽量自己去做。老师家里有一块平行四边形的木板,可是太大了,搬到课堂上比较麻烦,但老师带来了与它形状一样的图形(出示平行四边形),老师也为每位同学准备了一张,老师想用这块木板做一张尽可能大的长方形桌面,该从哪锯呢?同学们帮帮老师,行吗?那我们就动手做一做。

板书课题:动手做

(设计意图:从学生的学生活经验出发,调动学生的积极性,激发学生乐于助人的情操,营造宽松、自由的空间,使学生在积极主动参与探究活动中去寻求正确的答案,把学习数学的主动权交给学生

3、学生制作,教师巡视指导。

(设计意图:学生在动手实践中探索不同的制作方法,在小组中展示、交流、学习,留给学生充分的思考及表现自我的时间和空间)。

4、教师:同学们好聪明!想出了很多种方法做出了尽可能大的长方形,老师会选择其中的一种方法。谢谢你们帮了老师的忙!

(二)认识“高”

1、出示平行四边形。

(1)请同学们想一想,刚才剪的过程中你是怎样想的?谁来说说你的理由。(贴平行四边形)

(2)学生回答。(引导学生抓住对边之间的线段、垂直等关键词)

(3)教师小结:其实刚才同学们都是沿着平行四边形其中的一条高剪的,那怎样概括平行四边形的高呢,请大家在小组里互相说一说。

(4)教师收集各小组的信息、意见,引出平行四边形的高的概念。

教师:同学们同意这样的小结吗?

学生:同意。

2、出示三角形

(1)教师:这是什么图形?请同学们对比平行四边形,看了这个三角形你想说点什么?请大家在小组里说一说,什么是三角形的高?

(2)各小组汇报,教师收集信息,出示三角形的高的概念。

(设计意图:培养学生与人合作、交流的能力,让学生经历数学知识的形成过程,培养学生学习数学的兴趣。)

(3)尝试练习。

①教师:同学们想不想自己动手画一画三角形的高?

②学生试画,教师巡视指导。

教师:同学们画的时候发现什么问题?

学生:我用直尺画很难画垂直……

③师生交流得出:画各种图形的高最好用三角板画 ,画出的高更精确。

④师生共议用三角板画图形的高的最佳方法。

3、出示梯形

(1)教师:看到这个图形,你想提出什么数学问题?

(引导学生说出梯形有几组平行的对边,它的高是怎样得到的。)

(2)师生共同小结梯形的高的概念。

4、教师:从三种图形的高的概念中你发现了什么?和你周围的同学说一说。

(引导学生观察、说出它们的高都是垂直线段。)

(三)练习巩固

1、课本21页试一试第1题。

学生依次找出各个图形中的高是哪条线段,并在图中标出来,完成后集体订正。

2、课本21页练一练第1、2题

让学生任选一个图形画出相对边的高。完成后要求小组内互评,说说对方所画图形的高的意见。(通过练习使学生体会到边和高的对应关系)

3、课本21页练一练第3题

动手量一量,你发现了什么?

让学生在小组内测量三个同高但形状不同的三角形的高,说说他们的发现。(设计意图:充分发挥小组合作学习的优势,将发现的问题在小组内讨论,这样不仅让学生掌握了解决问题的策略,也培养了学生的合作精神。)

(四)总结反思

这节课大家有什么收获?有什么问题要向老师提出的吗?

(五)作业

课本22页练一练第4题

《因数与倍数》教学设计 篇6

《因数与倍数》教学设计

作为一名优秀的教育工作者,通常需要用到教学设计来辅助教学,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么什么样的教学设计才是好的呢?下面是小编帮大家整理的《因数与倍数》教学设计,欢迎大家分享。