三角形的内角和教学设计
此篇文章三角形的内角和教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
三角形的内角和教学设计 篇1
一、教材依据
苏教版四年级数学第八册第28~29页
二、教学方法及思路
数学学习的价值在于让学生亲身经历知识发生发展的过程。本节课力图带领学生进入这样一个学习过程:利用故事的形式,让学生产生疑问,三角形的内角和是不是180°?接着让学生通过小组合作的方法通过剪或折,得到三角形的三个内角都能凑成一个平角,得出三角形内角和是180°这一规律。通过课件的进一步演示,让学生对结论的形成过程有更系统更清晰的整理,较好的突破了这节课的重、难点部分。在练习设计方面,通过算一算,量一量,选一选,拼一拼,折一折,说一说等多种方式,提高学生解决简单的实际问题的能力。
三、教学目标
1、知识目标:让学生通过量、剪、拼、摆、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。
2、能力目标:让学生在学习活动中进一步增强探索的意识,提高合作交流的能力,获得成功的体验,树立学习的信心。
3、情感目标:让学生体会几何图形内在的结构美,并充分体会到学习数学的快乐。
四、教学重点
使学生理解并掌握三角形的内角和是180°。
五、教学难点
验证所有三角形的内角之和都是180°。
六、教学设备
量角器、正方形纸、剪刀、各类三角形(也包括等边、等腰)、实物投影、多媒体课件
七、教学过程
(一)创设情境,导入新课
1、师谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
让学生对了解的有关三角形的知识畅所欲言。
2、师谈话:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,(它们在争论谁的内角和大。)
3、 到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。
(板书课题:三角形内角和)
设计意图:一方面借助电教媒体,利用儿童喜闻乐见的故事创设情境,激发学生学习兴趣,另一方面,通过故事中的认知冲突,来激发学生的求知欲。
(二)自主探究,发现规律
1、认识什么是三角形的内角和三角形的内角和。
谈话:我们通常所说的三角尺的角是三角尺的内角,你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
2、探究三角形内角和的特点。
①让学生想一想、说一说怎样才能知道三角形的内角和?
学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行验证。)
②小组合作。
通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的.内角和都在180°左右。
引导学生推测出三角形的内角和可能都是180°。
3、 验证推测。
让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。
(小组合作验证,教师参与其中。)
4、全班交流,共同发现规律。
当学生汇报用折拼或剪拼的方法的时候,教师在电脑中根据学生的汇报,分别演示直角三角形、锐角三角形、钝角三角形的折拼和剪拼的过程。
在学生交流、教师课件演示的过程中,师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)
5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
[设计意图:先提出疑问,再通过学生的动手实践、自主探索与合作交流的方式,一方面调动了学生思维的积极性,另一方面,通过课件的演示,在学生的充分感知的基础上发现三角形的内角和是180°]
(三)巩固练习,拓展应用
根据发现的三角形的新知识来解决问题。
1、教学“试一试”
出示“试一试”:三角形中,∠1=75°,∠2=39°,∠3=( )?
学生试做,指名板演。学生可能有下面两种算法:
①∠3=180°—75°—39°=66°
②∠3=180°—(75°+39)°=66°
评议板演,教师让学生说说是怎样想的,再让学生用量角器量一量教科书中的∠3。提问:与算出的结果相同吗?
2、 “想想做做”第1题
生独立完成,集体订正,并说说解题方法。
3、“想想做做”第2题
提问:为什么两个三角形拼成一个三角形后,内角和还是180度?
4、“想想做做”第3题
生动手折折看,填空。
提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?
5、“想想做做”第6题
生说说自己的想法。
[设计意图:当学生获得“三角形的内角和是180°”的知识信息后,让学生通过算一算、量一量、拼一拼和折一折,巩固学生对三角形的内角和的认识。]
引导学生说出:首先要看三个内角的和是不是180°,其次看每个内角的度数是否符合这类三角形的特征。
[设计意图:开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题。]
(五)课堂作业
完成“想想做做”第4题和第5题。
(六)课堂总结
问:这节课你学到了哪些数学知识?这些知识你是怎样获得的?你还有什么疑问?
[设计意图:通过交流式的回顾,引导学生对本课学习知识和学习方法进行总结。]
(七)板书设计
三角形内角和等于180°
①∠3=180°—75°—39°=66°
②∠3=180°—(75°+39)°=66°
三角形的内角和教学设计 篇2
1. 清晰之问引其疑
提问对学生来说是引发思维的出发点,因此提问应是在学生对某些数学现象、某些数学研究有了一定的感知和认识的基础上进行的。教师提问学生必须有明确的提问目的和清晰的表达,方能促使学生对新知产生疑惑,激发兴趣,形成体验。
教学片段A:(七下《认识三角形》第一课时)
(上课铃声响后,师生行礼毕)
师:同学们,今天我们一起来学习新的知识,请同学们首先回顾下以前所学过的几何图形有哪些?
生1:学过了三角形、正方形、长方形……
生2:还有圆、四边形、平行四边形、五边形……
师:那么大家想一想,我们学过的三角形如何能构成?
(沉默稍许,一生举手)
生:三角形两边之和大于第三边(表情不自信,低头小声!)
师(一怔):噢!这说明了这位同学预习了新课内容,但我问的不是这个意思,我问的是如何构成三角形?(生有议论,但无人举手)
师(略急):大家请看黑板上的图形(指着三角形三边)这是什么?
生(齐声):边!
……
师:那么三个内角如何表示呢?
生:∠A,∠B,∠C
师:回答正确!有没有同学会用符号记作三角形呢?
一生举手上黑板书写 ABC
师:字母有没有顺序要求呢?生(齐声):没有!
师:请同学们打开补充练习完成第7页第4题。
生做题,师巡视指导……
此片段是苏科版七(下)第七章《认识三角形》第一课时新课引入部分。以提问形式进行,该师主要提问了13余次,不能说教师没有组织教学的提问意识,但却有不少设计可以再推敲!概括起来,其提问主要存在的缺憾有两点:“问无据,问不明”!
有效的提问必须从学生的实际出发,注重学生的年龄特征、知识水平和接受能力。其设计的目的立足于教材内容和学生的“最近发展区”,让学生能通过努力思考建构地认识新知!如果没有这样的问题设计的依据,随心所欲,信口开河,那么我们所设计的问题只是为了问而问,意义甚小!片段中教师开始提问学生回顾小学的旧知意图似乎是在通过回顾图形引入到三角形知识的认识,但由于学生的理解角度和学过的图形较多,回答不免散而耗时,不能及时切入新课,其问题与本节内容相去较远,有“敲边鼓”之嫌!这样的问题设计过多便会冲淡了学生的学习之趣!同样,问题中教师提问学生“三角形边还可以怎么表示?能不能用小写字母表示?”的设计笔者认为学生无人敢答不是无人不知,而是学生的最近发展区带来的对新知的不自信!教师可以这样设计:“三角形的边是线段,线段除了用大写字母可以表示,还可以怎么表示?那么是不是随意的用小写字母表示呢?大家通过预习能不能找到用小写字母表示的特征?”这样的设计虽不能说视为最佳,但其一可以引导学生认识三角形的边是线段,线段可以用小写的字母表示,另则可以促使学生自主去找到用小写字母表示边的特征!符合新课程中要求学生形成学习数学体验的要求!所以精巧之问须有精心准备!明确而有依有据的问题设计要求教师课前必须把握教材,摸清学生知识的基础,把问题设计在学生已有的知识基础上,这样才能不做无凭无据之问!
2. 多变之问激其趣
新的知识点形成之后,它还可以发散、深化,使知识得以迁移、发展,从而对学生问题的设计不单一,不固定是激发学生学习兴趣的重要方法!
多变之问在于(1) 变形式;(2) 多迁移;(3) 悬而不释
片段B:(《三角形内角和》)
师:同学们!我们小学学过了三角形的相关知识,请同学们根据你们的所学完成下面的练习!
(师生共同完成练习)
师:同学们完成的很好!那么有没有同学能告诉大家你计算角度的依据是什么?
生:我是根据三角形内角和为360度进行计算的!
师;回答的很好,这个知识我们小学就知道了,那么今天我们就一起来研究为什么三角形的内角和为360度呢?请同学们分组讨论!
(生分组热烈讨论,师参与并指导!)
师:同学们讨论的非常积极!请同学们以小组为单位发表你们讨论的'结果!
生:我们小组是通过动手操作说明三角形内角和为360度的。
(生上讲台示范)
师:他们小组将一个三角形三个内角撕下拼成平角说明内角和为360度,是否正确?
生:正确!
师:通过撕纸说明是一种直观的感受,大家再想一想有没有其他方法说明呢?
生:用平行线的性质来说明!
师(没有评价):请同学们再思考看看!除了这样的想法有么有其他想法。
生:我还有一个想法!也是利用平行线性质来说明!
师:因为课堂时间有限,大家讨论很积极,思路也很多,刚才两位同学展示的完全正确,他们都是借助了平行线的性质进行了说明!当然,有些其他做法的同学,我们课后再继续讨论!
这个教学片段中教师的问题设计并不是很多,但总体来看还是有可取之处的!这样的设计紧紧围绕了问题设置的目的而展开,才开始的三角形内角和知识的再认识的问题设计不单一和老套,没有“三角形内角和为多少的”开门见山式!而是以习题形式取代了对三角形内角和知识的回顾,让学生再体验中去感受以前所学过的知识点,既复习了旧知,也将知识进行了初步应用。后面几个问题的设计则是将学生的思维进行了迁移,拓展了学生的思路,其中有些地方教师并不给予当即的评价,悬而不释!目的在于引导更多的学生参与进来,促使更多的学生有信心进行思考回答!当然,寻找知识的迁移、发展点,让我们的问题问中有变应注意其实效性和可行性,应从知识的本身出发做适当扩展,切不可以因变而随意迁移知识点,加深知识难度!
3. 有别之问树其志
所谓“有别之问”即是我们的问题设计应该考虑学生的不同层次,应考虑不同学生的知识水平和接受能力!对问题的设计应有铺垫,由浅入深,对基础薄弱的学生所提出的问题 要求过低或过高都不能激发学生的创新思维和积极性。因而我们设计问题时要注意合理行,层次性,注重面向全体学生,按班级中上等学生的水平来设计,同时也要顾及学生的个性特点和个体差异,以发挥每个学生的学习兴趣!
片段C:(平行线判断的说明)
如图,AD//BC,∠A=∠CAB与DC平行吗?为什么?
这个问题原题目对于多数同学而言有些难度!因而就需要教师在课前作好问题的设计!比如可将此题的问题设计成如下的问题串:
(1) 根据AD//BC,同学们能判断哪些角相等?
(2) 结合∠A=∠C,大家还能得到什么结论?
(3) 如果∠B=∠C,你能到哪两条线段平行?
通过这样的问题串的设计并针对问题的层次有区别的进行提问,步步引导学生对题目进行分析!这样,多数学生能从自己对问题的理解出发,一个问题接一个问题去思考!调动了学生学习的兴趣!
三角形的内角和教学设计 篇3
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
三。自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是 180 度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生: ……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5 分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
( 预设: 如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师: 那请你说一下你度量的结果好吗?
( 生汇报度量结果)
师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的`同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?
生:180 度。
师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180 度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生 1 :量的不准。
生 2 :有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180 度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形的内角和教学设计 篇4
【教材分析】
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】
知识目标:掌握三角形内角和是180度这一规律,并能实际应用。
能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标: 让学生体会几何图形内在的结构美。
【教学过程】
一、 情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。
钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”
师:想一想,什么是三角形的三个内角的和。
生:三角形的三个内角的度数和。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的`学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)
二、自主探究,验证猜想
师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?
生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生3:我把三角形的三个角撕下来,拼一拼是否180°。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
……
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单
实验名称
三角形内角和
实验目的
探究三角形内角和是多少度。
实验材料
尺子
剪刀
量角器
锐角三角形纸片
直角三角形纸片
钝角三角形纸片
我的方法
我的发现
我的表现
自评
互评
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形内角和等于180°
(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)
四、分层练习,巩固创新。
①课件出示:
师:这个三角形是什么三角形?知道几个内角的度数?
生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。
师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。
学生做完后反馈讲评时让学生说说自己的方法。
生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。
②学生完成完成P29的第一题。
引导学生按照前面的方法独立完成,教师巡视,集体订正。
③猜一猜三角形的另外两个角可能各是多少度。
同桌同学互相说一说。(答案不唯一)
④小组操作探究活动。
让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。
方 法
四边形内角和
用量角器量出每个内角的度数,并相加。
把四边形四个角剪下来,拼在一起。
把四边形分为两个三角形。
填表后让学生想一想、互相说一说,四边形内角和是多少度?
(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)
三角形的内角和教学设计 篇5
教学目标:
1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生合作交流的能力,体验学习数学的快乐。
教学过程:
教学设想
学生活动
备注
一、 创设情境
1、故事导入
有一天,两个三角形吵了起来,大三角形说自己的个头大,所以内角比小三角形大。可小三角形说别看自己个头小,但角却不小。他们争得不可开交,始终争论不出结果。到底谁的内角大,谁的内角小,请大家帮忙想个办法,好吗?
生:可以用三角板量一量每个内角的度数,也就求出三角形内角的和,就知道谁大谁小了。
这节课,我们就来研究三角形的内角和。
二、合作交流
量一量
(1)师:同学们,你们的书上有许多三角形,现在就请你们选择喜欢的三角形,到小组里量出每个角的度数。再计算出三角形内角的和,并填好小组活动记录表。
(2)各小组汇报记录结果,并说说有什么发现?
生:每个三角形的三个内角和接近180度。
师:三角形的内角和就是180度。接近180度的是在测量过程中出现了一点小的误差。
(3)除了用测量的方法能计算出三角形的内角和等于180度外,还有许多好的方法呢!
撕一撕
引导学生把一个三角形的`三个角撕一下,拼一拼。
折一折
自己试着折一折,也会发现利用折一折,可以知道三角形内角和是180度。
师小结:刚才,同学们用量、撕、折的方法知道了三角形内角和是180度,现在你们可以告诉这两个三角形不要吵了,它们的内角是一样大的。
算一算
这两个三角形很感谢同学们,你们看,它们的好朋友也来了,它们只知道自己两个角的度数,你们能帮它们算出另外一个角的度数吗?
尝试:阅读与思考第1、2题
反馈交流
三、巩固练习
完成练习与应用第1、2题
小组活动开始
小组活动记录表第()组
三角形的内角和教学设计 篇6
知识与技能
1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。
2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。
情感态度与价值观
3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。
教学重点:
1、探索和发现三角形三个内角和的度数和等于180o。
2、已知三角形的两个角的度数,会求出第三个角的`度数。
教学难点:
已知三角形的两个角的度数,会求出第三个角的度数。
方法与过程
教法:主动探究法、实验操作法。
学法:小组合作交流法
教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。
教学课时:1课时
教学过程
一、预习检查
说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度?组内交流订正。
二、情景导入呈现目标
故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。
三、探究新知
自主学习
1、活动一、比一比2、活动二、量一量
(1)什么是内角?
(2)如何得到一个三角形的内角和?
(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。
(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。
3、说一说,做一做。
(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。
(2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。
四、当堂训练(小黑板出示内容)
1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。
2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。
3、三角形具有()性。
4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。
5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。
6、交流学案第三题。先独立做,最后组内交流。
五、点拨升华
任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。
六、课堂总结
通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。
七、拓展提高
妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少?先独立做,最后组内交流。
板书设计:
三角形的内角和
测量三个角的度数求和:结论:
教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。
当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。
返回首页