正比例教学设计
此篇文章正比例教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
正比例教学设计 篇1
教学内容:教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。
教学目标:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。
教学重点:
结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。
教学难点:
能跟据正比例的意义判断两种相关联的量是否成正比例的量。
教学准备:
教学过程:
一、导入
谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?
学生讨论,反馈。
[设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]
二、教学例1
1、出示例1的表格。
提问:表中列出了哪两种量?(板书:时间和路程)
观察表中的数据,哪一种量的变化引起了另一种量的变化?
指名回答。
谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)
为什么说路程和时间是两种相关联的量?
学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)
2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?
学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……
提问:你能用一个式子来表示上面的规律吗?
根据学生回答,板书:=速度(一定)
3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)
[设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]
三、教学“试一试”
1、出示“试一试”,学生自由读题。
2、让学生根据已知条件把表格填写完整。
3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。
4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。
[设计意图:让学生在认识成正比例的量的'过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]
四、归纳字母公式
1、比较例题和“试一试”的相同点。
提问:观察上面的两个例子,它们有什么相同的地方呢?
(1)都有两种相关联的量;
(2)两种相关联的量相对应的两个数的比值总是一定的;
(3)两种量都成正比例。
2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?
根据学生的回答,板书:=(一定)
交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。
[设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]
五、巩固练习
1、完成第63页“练一练”。
学生独立思考并作出判断,要用完整的语言说出判断的理由。
2、完成练习十三第1题。
(1)让学生按题目要求先各自算一算、想一想。
(2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。
3、完成练习十三第2题。
(1)让学生独立判断,并指名说说判断的理由。
(2)注意引导学生有条理地说明判断的思考过程。
4、完成练习十三第3题。
(1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?
(2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。
(3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。
[设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]
六、全课总结
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
[设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]
七、作业
完成《练习与测试》相关作业。
板书设计
正比例的意义
时间和路程路程和时间是两种相关联的量。
=80=80=80……
=速度(一定)
=(一定)
正比例教学设计 篇2
教学内容:
九年义务教育六年制小学数学第十二册P63——64
教学目标:
1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:
能认识正比例关系的图像。
教学难点:
利用正比例关系的图像解决实际问题。
设计理念:
数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题
教学步骤教师活动学生活动
一、复习激趣1、判断下面两种量能否成正比例,并说明理由。
◎数量一定,总价和单价
◎和一定,一个加数和另一个加数
◎比值一定,比的.前项和后项
2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?
学生口答
想象猜测
二、探究新知1、出示例1的表格(略)
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像
3、展示、纠错
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
学生到黑板上示范
互相评价纠错
学生讨论
说说是怎样想的
三、巩固延伸
1、完成练一练
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题
先看一看、想一想,再组织讨论和交流。
要求学生说出估计的思考过程。
3、练习十三第5题
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
独立完成,集体评讲
想一想,说一说
画一画,议一议
学生设计,交换检查并相互评价
四、评价反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
正比例教学设计 篇3
教学资料:
北师大版小学数学六年级下册《正比例》
教学目标:
1、结合丰富的事例,认识正比例。
2、掌握成正比例变化的量的变化规律及其特征。
3、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:
认识正比例的好处和怎样决定两个变化的量是不是成正比例。
教学难点:
决定两个变化的量是不是成正比例。
教具准备:
课件
教学过程:
一、导入新课:
出示:路程、单价、正方形的边长……
根据上面的某个量,你能想到些量?为什么?
在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。
二、新课探究:
(一)、活动一:初步感受正比例关系。
1、课件出示正方形周长与边长、面积与边长的变化状况:
(1)请把表格填写完整。
(2)观察表格,你能发现什么规律?
(群众填表后,独立观察,发现规律,
2、组织学生交流发现的规律,引导学生比较两个规律的异同点。
3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。
所以两个相互依靠的变量之间的关系是不一样的。
(二)、活动二:结合实例体会正比例的'好处:
1、课件出示:
(1)将表格填完整。
(2)从表格中你能发现什么规律?
(以小组为单位,选取一个情境进行研究。)
2、交流汇报:
(三)、活动三:揭示正比例的好处。
1、这2规律有什么共同点?
教师随着学生的回答板书:
都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。
2、教师揭示正比例的含义。
像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)
3、结合实例说明:
表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。
学生说一说表二的两个量。
4、用字母表示出正比例关系。
如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?
(四)、活动四:决定两个量是不是成正比例的量。
1、出示活动一中的表格:
正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?
学生自主决定后交流。
2、看来决定两个量是否成正比例务必具备几个条件?
强调:只有具备两个条件,我们才能说这两个量成正比例。
三、课堂练习:
1、根据下表中的数据,决定表中的两个量是不是成正比例:
平行四边形的面积/cm2
6
12
18
24
30
平行四边形的高/cm
1
2
3
4
5
买邮票的枚数/枚
1
2
3
4
5
所付的钱数/元
0.8
1.6
2.4
3.2
4.0
2、小明和爸爸的年龄变化状况如下:
小明的年龄/岁
6
7
8
9
10
11
爸爸的年龄/岁
32
33
(1)把表格填写完整。
(2)父子的年龄成正比例吗?为什么?
3、决定下面各题中的两个量是否成正比例,并说明理由。
(1)每袋大米的质量必须,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长和长。
(4)圆的周长和直径。
(5)圆的面积和半径。
四、课堂总结:
透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。
板书设计:
正比例
一个量随着另一个量的变化而变化
两个量的比值是不变
x=ky(k必须)
教学反思:
1.课堂流程的设计,延展了探究空间。
本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。
2.数学材料的呈现,丰富了体验途径。
为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。
3.学习方式的选取,促进了深度感悟。
教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
正比例教学设计 篇4
【课题】:
人教版小学数学六年级(下)《正比例的好处》
【教材简解】:
正比例的好处是小学数学六年级(下)第三单元的教学资料。这部分知识是在学生具有比和比例的知识以及认识常见数量关系的基础上编排的,透过对两个数量持续商必须的变化,理解正比例的好处,初步渗透函数的思想。
【目标预设】:
1、知识潜力:使学生认识正比例的好处,理解、掌握成正比例量的变化规律及其特征。
2、过程与方法:能根据正比例的好处决定两种相关联的量成不成正比例关系。
3、情感态度与价值观:进一步培养学生观察、分析、综合等潜力;培养学生的抽象概括潜力和分析决定潜力。
【重点、难点】:
重点:使学生理解正比例的好处。
难点:引导学生透过观察、思考发现两种相关联的量的变化规律(即它们相对应的数的比值必须),从而概括出正比例关系的概念。
【设计理念】:
本节课的教学设计遵循以下几点设计理念:
1、抽象实际事例中的数量变化规律,构成正比例的概念。
例1是让学生初步感知“两种相关联的量”以及“成正比例的量”的含义。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是必须,能够说路程和时间成正比例,它们是成正比例的量,学生在那里首次感知了正比例关系。“试一试”是在另一组数量关系中继续感知正比例关系。使得学生在上面两个实例中感知了正比例的具体含义,然后教材再抽象概括出正比例的好处,这一环节是概念构成的重要环节,也是发展数学思考的极好机会。
2、用图像直观表达正比例关系。
例2是按照《课程标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。
第一步认识图像上的点,说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。
第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。
第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。
【设计思路】:
本课教学设计我从生活中一些常见的数量关系入手,复习一些数量之间的相互关系,打破了传统的正比例好处教学“复习 ——教学例1——教学例2——揭示概念——巩固练习”的教学模式,取而代之是让学生充分发挥学习的用心性,以及在学习过程中的合作探究潜力,进而总结出新知的尝试,本节课的教学依据“自学——反馈——探究——应用”这一课堂基本模式设计,结合新课程理念让学生在自主探究的氛围下学习,以求在理想的教学过程中产生理想的学习效果。
【教学过程】:
一、复习准备:
口答(课件演示)
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、新授教学:
(一)自学
课件出示以下两组自学材料:
1、一辆汽车行驶的时间和路程如下
时间(比)
1
2
3
4
5
6
……
路程(千米)
50
100
150
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)路程是怎样随着时间变化而变化的?
(3)相对应的路程和时间的比分别是什么?比值是多少?
2、一种圆珠笔,枝数和总价如下表
数量(枝)
1
2
3
4
5
6
……
总价(元)
1.6
3.2
4.8
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)总价是怎样随着数量变化而变化的?
(3)相对应的总价和数量的比分别是什么?比值是多少?
【设计意图:以学生常见的数量关系入手,以表格并附思考问题的形式出现,激起学生的认知冲突,激发学生的学习兴趣和强烈的求知欲,让学生边填边思,为学生用心参与后面的学习活动打下基础。】
(二)反馈:
师:在填表过程中,你发现了什么?每一组材料中的两种量有什么关系?它们的变化有规律吗?
1、学生自由说,小组内总结。(小组汇报,教师小结。)
小结:像这样表里的两种量,一个量变化,另一个量也随着它的变化而变化的,这两种量就是相关联的量。
【根据学生反馈板书】:
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
(说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“必须”)
2、概括正比例的好处。
(1)师:刚才同学们透过填表、交流,明白了时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是必须的。总价和数量也是两种相关联的量,总价随着数量的变化而变化。数量扩大,总价随着扩大;数量缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和数量的比的比值总是必须的。这样我们就能够用数量关系式来表示:
【板书】:路程÷时间=速度(必须)总价÷数量=单价(必须)
问:谁来说说这两个数量关系式的意思?
(2)小结:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)必须,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们这天要学习的资料。
【板书课题】:成正比例的量
追问:决定两种相关联的量成不成正比例的关键是什么?(比值是不是必须)
(3)字母表达关系式。
问:如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?
【板书】:=k(必须)
(4)质疑。
师:根据正比例的好处以及表示正比例关系的式子想一想:构成正比例关系的两种量务必具备哪些条件?
【设计意图:透过学生自学两例“正比例”好处教学素材的反馈,让学生感悟其基本特征,从而由两个具体数学现象归纳抽象出数学结论,让学生经历这个过程,丰富他们的数学体验,实现“用教材教”而不是“教教材”这一新课程理念的转变。】
(三)探究:
1、课件出示表格
时间/时
1
2
3
4
5
6
……
路程/千米
80
160
240
320
400
480
……
根据表中列出的两种量,教师在黑板上分别画出横轴和纵轴。
问:你能根据表中的每组数据,在方格图中找一找相应的.点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
强调:每个点都就应表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎样看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
【设计意图:透过学生小组讨论、总结、汇报、师生交流后概括出的数学新知,再透过用图像直观表达正比例关系,进一步验证学习正比例关系的两个量用图像表示的状况,以帮忙学生构建立体的概念模型。师生的平等交流与探讨,激起情感共鸣,增强课堂的活力。】
(四)应用:
1、决定下面每题中两种量是不是成正比例,并说明理由。
(1)苹果的单价必须,购买苹果的数量和总价。
(2)长方形的长必须,它的宽的面积。
(3)每小时织布米数必须,织布总米数和时间。
(4)小新跳高的高度和他的身高。
学生独立思考,指名回答,课件演示核对。
2、完成练习十三第2题。
先让学生独立决定,再指名学生有条理地说明决定的理由。
3、完成练习十三第3题。
先让学生说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米?再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值必须时,它们才成正比例。
【设计意图:给学生练习的空间,加强学生对成正比例量的认识及正比例好处的理解,在对知识的实际应用中获得成功的体验,实现对新知的巩固。】
4、完成练习。
学生先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。(组织同桌讨论和交流)
三、课堂小结:
师:透过这节课的学习,你们都明白了什么?怎样决定两种量是否成正比例?
四、课堂延伸:
思考:正方形的边长和面积成正比例吗?
【设计意图:知识的拓展,能激活学生的思维,培养学生多角度思考问题的潜力,给学生更广的思维空间,充分发挥学生的潜能,使学生获得更好的发展。】
五、课外作业:
完成练习十三第1、4题。
六、板书设计:
正比例的好处
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
路程÷时间=速度(必须)总价÷数量=单价(必须)
=k(必须)
正比例教学设计 篇5
导学目标
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
导学重点:成正比例的量的特征及其判断方法。
导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
预习学案
填空
1、如果路程时间=()(一定),那么()和()成正比例。
2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。
3、如果yx=k(一定),那么()和()成正比例。
导学案
学习例1
在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。
高度24681012
体积50100150200250300
底面积
体积和高度有什么变化?观察他们的比值,你发现了什么?
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:
yx=k(一定)
想一想,生活中还有哪些成正比例的量?
小组讨论交流。
看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
课堂检测
下列各题中的两种相关联的量是否成正比例关系,并说明理由。
1、正方体的棱长和体积
2、汽车每千米的.耗油量一定,耗油总量和所行千米数。
3、圆的周长和直径。
4、生产800个零件,已生产个数和剩余个数。
5、全班的人数一定,一、二组的人数和与其他组的人数和。
6、和一定,加数与另一个加数。
7、小苗牌2B铅笔的总价和购买枝数。
8、出油率一定,所榨出的油的重量和大豆的重量。
课后拓展
从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?
板书设计
成正比例的量
高度/cm24681012
体积/cm350100150200250300
底面积/cm2
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例表达式:yx=y(一定)
正比例教学设计 篇6
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成( )比例。
(2)单价一定,总价与数量成( )比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)
师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】
二、揭示课题、探索新知。
1、小黑板出示例5
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1) 学生自己解答。
(2) 交流解答方法,并说说自己想法。
算式是:12.8÷8×10
=1.6×10
=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)
(也可以先求出用水量的倍数关系再求总价。)
10÷8×12.8
=1.25×12.8
=16(元)
【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】
师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)
(3)小黑板出示以下问题让学生思考和讨论:
1)题目中相关联的两种量是( )和( ) ,说说变化情况。
2)( )一定,( )和( )成( )比例关系。
3)用关系式表示是( )
(4)集体交流、反馈
板书: 水费 用水吨数
12.8元 8吨
?元 10吨
水费:用水吨数 = 每吨水的价钱(一定)
师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的'比值是相等的。
(5)根据正比例的意义列出比例式(方程):
学生独立完成,教师巡视。
反馈学生解题情况。
8
12.8
10
χ
解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10 或 =
8χ=12.8×10 8χ= 12.8×10
χ=128÷8 χ=128÷8
χ= 16 χ= 16
答:李奶奶家上个月的水费是16元。
【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】
(6)将答案代入到比例式中进行检验。
你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?
生交流,汇报。
2、变式练习。
刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:
张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
(1)比较一下改编后的题和例5有什么联系和区别?
(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)
(3)集体订正,学生说一说你是怎么想的?
3、概括总结
师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?
学生讨论交流,汇报。
师总结:
1、分析找出题目中相关联的两种量。
2、判断他们是否是正比例关系。
3、根据正比例的意义列出比例。
4、最后解比例。
5、检验作答。
【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】
三、巩固练习,形成技能。
1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗
师提醒:同一时间、同一地点的身高和影长成正比例。
学生读题后,先思考以下三个问题。
① 题中已知哪两种相关联的量?
②它们成什么比例关系?你是根据什么判断的?
② 你能列出等式吗?
生独立完成,并汇报解答过程。
2、教科书P60“做一做”。
生独立解答。
【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】
四、全课总结
通过今天的学习,你有什么收获?
五、布置作业
练习九第3、5题。
板书设计:
用比例解决问题
水费 用水吨数 解:设李奶奶家上个月的水费是χ元。
12.8元 8吨
?元 10吨 12.8 :8 =χ:10
8χ= 12.8×10
水费:用水吨数 = 每吨水的价钱(一定)
χ=128÷8
χ= 16
答:李奶奶家上个月的水费是16元
返回首页