返回首页
智远网 > 短文 > 教案 > 正文

分数与除法的教学设计

2025/11/04教案

此篇文章分数与除法的教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

分数与除法的教学设计 篇1

教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。

本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的`题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。

教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。

2、培养学生分析问题和解答问题的能力。

教学重点:找准每一步的单位“1”和数量关系。

教学难点:掌握两类应用题的结构特点,找准数量关系。

教学过程:

一、复习导入

1、口算天天练。(课件示题,指名口答)

渗透个别算式的知识点。

2、“看谁先找到题中的单位‘‘1‘‘。”指名口答

3、分析分率句,口头列式解答。

教师小结:题目中已知了分率和单位“1”的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。

4、谈话引入新课。

东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)

问:在这道题中,有几个单位“1”?这两个单位“1”的量是已知还是未知?

这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)

二、新授课

1、教学例4。

1.)师引导学生分析题目中的数量关系。

2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。

3.)师引导,学生确定每一步的算法。

师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。

4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)

2、完成“练兵场1”中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)

更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?

3、教学例5。

1.)出示例题,齐读题目。

2.)师引导学生分析题目中的数量关系。

3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。

4.)师引导,学生确定每一步的算法。

师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。

5.)谁还会用列方程的方法解答这道题?(指名板演)

4、完成“练兵场1”中的题目。集体订正。

三、巩固练习

1、基本练习。只列式,不计算

要求先独立做,然后集体订正。

下面几道题和前面的稍稍有点不同,敢挑战吗?

2、变式练习。

3、拓展练习。

四、小结

今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。

五、布置作业

练习十一的2、3、6题。

分数与除法的教学设计 篇2

教学目标:

1、体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、培养学生动手动脑能力,以及判断、推理能力。

3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

体验分数除以整数的计算方法,并能正确的计算。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片、彩笔。

教学过程:

一、创设情景,教学分数除法的意义。

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

(1)引导参与,探究新知。

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2。

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……。

(2)质疑问难,理解新知。

接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的`方法计算。

通过计算你们有什么发现?

生1:用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21。

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法。

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21。

(3)比较归纳,发现规律。

师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

二、巩固练习。

学生独立完成。

三、课堂小结。

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)。

分数与除法的教学设计 篇3

板书设计(需要一直留在黑板上主板书)

分数除法

例1:每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

3盒水果糖重300g,那么每盒有多重?

300÷3=100(g)

300g水果糖,每盒重100g,可以装几盒?

300÷ 100=3(盒)

归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)

学生学习活动评价设计

通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的'几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。

教学反思

本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

分数与除法的教学设计 篇4

分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。

就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。

教学目标

知识和技能:

1、使学生理解倒数的`意义,会求一个数的倒数。

2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。

3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。 过程与方法:

动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。 情感、态度和价值观:

使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。 教学重点、难点:

一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算

顺序,能应用计算法则较熟练地进行计算。

我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒

是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)

如果把这道乘法应用题改编成两道除法应用题,一起来看一下: A、3盒水果糖重300克,每盒有多重? 300÷3=100(克) B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒) (3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。 1/10×3=3/10(千克) 3/10÷3=1/10(千克) 3/10÷1/10=3(盒)

通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法: 一、对应法

通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。

如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”

题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5— 2/7)=140(米)。 二、变率法

题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。

如“学校买了一批图书,高年级分得这些书的2/5,中年级分得余下的1/4,低年级分得180本,这批图书共有多少本?

该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1— 2/5)×1/4,这样可求出总本数: 180÷[1—2/5—(1—2/5)×1/4] =400(本)。 三、常量法

题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。

如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”

该题中再读 30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。 四、联系法

某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。 如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的 4/5,四年级种树棵数是五年级种树棵数的3/4,五年级种数多少棵?”

题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192 (棵)。 五、转化法

将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。

如“某工厂有三个车间,第一车间人数是其余两个车间人数的1/2,第二车间人数占其余两个车间人数的1/3,第三车间500人,三个车间共有多少人?

把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车

内容需要下载文档才能查看

间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3) =1200(人)。 六、假设法

对题目的某些数量作出假设,

内容需要下载文档才能查看

导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。

如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”

假设甲、乙两队都做 8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷ [1/3÷(18-8)]=30(天)。 七、倒推法

题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。 如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩 16米,这捆电线有多少米?”

这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷ (1-3/4)=48(米), (48+2)÷(1-1/6)=60(米)。 八、方程法

一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。 如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时? 设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x) =1,解得×=2,18-2=16(小时)。

分数与除法的教学设计 篇5

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

重点:掌握分数与除法的关系,会用分数表示两个数相除的'商。

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。

二、探索新知。

1、教学例1。

(1)课件出示例1。

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果。

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

三、拓展应用。

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结。

通过这节课的学习,你有什么收获?

五、作业布置。

完成教材第50页”做一做“。

板书课题:

《分数与除法》。

分数与除法的教学设计 篇6

教学目标

1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

教学重难点

理解分数与除法的关系

教学准备

每人准备4张同样大小的圆片

教学过程

一、引入情境,揭示例题

口答题

1、把8块饼干平均分给4个小朋友,每人分得几块?

2、把4块饼干平均分给4个小朋友,每人分得几块?

3、把3块饼干平均分给4个小朋友,每人分得几块?

怎样列式?板书3÷4

引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

不满1块那该怎么表示呢?

生:小数或分数

二、实践操作探索研究

师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

学生动手操作

教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

师:接下来我们请同学汇报一下他们研究所得结果。

(生讲述这样分的理由)

教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

总结:把3块饼干平均分给4个小朋友,每人分得3/4块

板书:3÷4=3/4(块)

师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

学生口述理由。板书:3÷5

师:想想该怎么去分?把你的想法和同桌交流下。

指名让学生说说思考过程。

板书:3÷5=3/5(块)

师:如果分给7个小朋友呢?

学生口述3÷7=3/7(块)

三、归纳总结,围绕主题

师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

板书课题:分数与除法的关系

生相互交流。教师板书:被除数÷除数=

师:除法算式又可以写成什么形式?

生补充:被除数÷除数=被除数/除数

师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

生:a÷b=a/b

师:这里的a和b可以取任何数吗?为什么?

生:除数不能为0。

师:分数和除法之间的关系,你有什么好的方法记住它们吗?

生交流讨论并回答

师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

四、巩固练习,拓展延伸

师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

集体校对。

师引导:比较上下两行有什么不同?

在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

师:接下来请大家独立完成“试一试”两小题。

然后小组交流你是怎么想的?

师:把7分米改写成用米作单位,可以列怎样的除法算式?

生:7÷10=7/10(米)

师:第二个呢?

生:23÷60=23/60(时)

师:独立完成“练一练”的第二题

集体讲评校对。

师:完成“练习八”的第一题口答

师:完成“练习八”的第三题

学生在书本上完成,

教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的.彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

五、课堂作业

完成“练习八”的第二题

教后反思:

本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<