返回首页
智远网 > 短文 > 教案 > 正文

烙饼问题教学设计

2025/11/07教案

此篇文章烙饼问题教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

烙饼问题教学设计 篇1

教学目的:

1、使学生通过简单的事例,初步体会运筹思想和对策论方法在解决问题中的运用。

2、是学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意思。

3、让学生感受到数学在日常生活中的广泛运用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意思和解决问题的的能力。

4、是学生逐渐养成合理安排时间的良好习惯。

教学重点:

合理安排最节省时间的操作,体会在解决问题中的最优化思想的应用。

教学关键:

合理利用时间烙三张饼的方法。

教具准备:

多媒体课件、扑克牌。

教学过程:

一、情境导入:

1、同学们喜欢吃烙饼吗?谁烙过饼,或看家长烙过?能给大家说说烙烙饼的过程吗?

2、烙饼中有许多数学知识,这节课我们就去探寻有关烙饼的知识。

板书课题:烙饼中的数学问题

二、探究新知

1、出示主题图

师:“从图上你能得到哪些信息?”师:“妈妈烙一张饼最少需要几分钟?”

师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”

小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。

师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?

2、学生操作,探究烙3张饼的方法。

让学生用发的扑克牌烙一烙,同桌说说用了几分钟,是怎样烙的。 【设计意图】在引导学生烙一张饼、2张饼的基础上,留给学生具有探索价值的“3张饼烙法”进行自主探究、合作交流,遵循学生认知的发展规律,有利于学生体验与理解、思考与探索;恰当地处理了直接经验与间接经验的关系,符合《课标》对课程内容的要求。

3、学生演示烙饼法。

师:谁愿意把你烙饼的方法介绍给大家。(学生上台动手烙,边烙边说)

让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”

4、师生演示小结烙饼三张饼的方法:速烙饼法

师:观察思考:你发现了什么?

1、使用快速烙饼法,锅里面必须同时放2张饼。

2、用的时间短。)让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。 【设计意图】烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。

5、迁移运用

师:(出示表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?

学生发言。班内交流,并比较哪个小组的方法最好。

教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”

小组活动,通过小组交流,使学生找到最佳方法。 教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”

学生发言。班内交流,并比较哪个小组的方法最好。

教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”

5、探究规律。

让学生仔细观察表格、小组讨论交流,说一说自己的发现。

(1)仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?

(2)仔细观察烙饼的张数不同烙饼的方法有什么不同?

学生在充分交流探讨的基础上,得出结论:

1、如果要烙的.饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。

【设计意图】通过拓展性的设问,既是对前面所学知识进行巩固和运用,也是为了让学生找到最优方法,一方面为学生思维能力的培养提供了时间和空间,另一方面让学生在实践中体会了优化思想在解决实际问题中的应用。

二、拓展延伸

课件出示114页做一做第1题。

教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”

1、引领理解题意。

2、全班交流

三、全课总结

1、这节课你学到了什么?

2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。

烙饼问题教学设计 篇2

教学目标:

1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

教学难点:寻找合理、快捷的烙饼方案。

教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

教学过程:

一、预设情景,走进生活。

师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

生2:只需要5分钟,把5个鸡蛋一起放进锅里。

师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

——板书:烙饼问题

(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

二、围绕主题,探索新知。

1、解读信息,理解烙饼规则。

师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

生:每次只能烙2张饼;两面都要烙;每面3分钟。

师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

2、观察法,探究烙2张饼的最优方法。

师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

师:如果要烙2张饼呢,最少需要几分钟?

生1:1张饼要6分钟,烙2张饼就要12分钟。

生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

生:2张饼同时烙。

师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

3、动手操作,探究烙3张饼的最优方法。

师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节 省时间。

(1)学生尝试烙饼。(教师巡视并做个别指导)

(2)汇报交流。(预计有18分钟、12分钟、9分钟)

预设: ① 一张一张烙:烙一张要:3+3=6(分钟) 烙三张要:6×3=18(分钟)

② 先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟) 师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

(4)集体交流,对比择优。

师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

4、总结方法,探究规律

(1)脱离学具,思考烙4张饼的最优方法

师:如果要烙4张饼,怎样烙才能最节省时间?

师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

生:先烙2个,再烙3个。

师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

(4)发现规律。

师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律) 师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

烙饼所用的最少时间与饼的`张数有什么关系?

生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价) 生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

师:“3”是什么?

生:“3”是烙一面需要3分钟

师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

三、全课总结

今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

烙饼问题教学设计 篇3

一、创设生活情境,激趣引新

师:日常生活中,大家可能吃过各种各样的饼。

拿出一个烙饼问:吃过这样的饼吗?

学生有的人说吃过,有的人说没有吃过。

师:它叫烙饼,知道是怎么做的吗?

拿出平底锅一边演示烙饼的过程,一边讲解:先把一面烙几分钟,再把另一面烙几分钟,熟了。

师:想试试吗?拿出准备的圆片,用大圆片代替锅,小圆片代替饼,烙一个试试。

学生动手操作烙饼。

师:假如饼的正反面都烙3分钟,请问烙熟一个饼要多长时间?

学生回答。

师:看似很简单吧,其实不然,烙饼中也有学问哦,今天咱们就来探讨烙饼问题中的学问。(板书课题)

二、探究新知

1、动手操作

刚才我说烙饼中有学问的时候,有人不以为然,耳听为虚眼见为实,接下来咱们就来进行一次烙饼比赛,看谁是最聪明的烙饼师!请看比赛规则:大屏幕出示:

(1)每人烙3个饼。

(2)锅里每次最多只能放两个饼。

(3)饼的两面都要烙,每面3分钟。

(4)算出烙完3个饼所用的时间。

请一个学生读一读。

师:规则明白了吗?那就开始烙饼吧!

学生动手操作。

2、探讨优化方法

师:大家的饼都烙熟了,你们用了多长时间?

有的用了12分钟,有的用了18分钟,有的用了9分钟。

师:真奇怪,都是烙3个饼,为什么你们用的时间有长短呢?奥妙在哪里?请三个代表上台给我们演示一下烙饼的`过程,请大家认真观察、倾听和思考!

三个学生上台边演示边讲解。

师:现在知道奥妙在哪里了吗?谁来说一说?

学生自由发言。

师:听了大家的发言,我知道了导致时间不同的主要原因是他们烙饼时的方法不同,这三种方法,你们认为哪种方法最好?它好在哪里?

学生回答。

师归纳:我也认为某某的方法最好,因为安排合理,所以用时最少,在数学上我们把这样的方法称为最优化的方法!现在我们就用最优化的方法再烙烙这三个饼吧!

学生用最优方法烙饼。

3、深化提高

师:知道了烙3个饼的最优化方法,那么烙4个、5个、6个......10个饼的最优化方法又是怎样的呢?出示表格:

饼数(个) 最优方法

4

5

6

7

8

9

10

有信心找出来吗?咱们就以小组为单位展开讨论吧!

汇报、反馈:有结论了吧?哪个小组先来汇报?

一个小组的代表先发言,其余小组补充。

依据学生的讲解填写表格。

引导观察:仔细观察这个表,想一想能得出什么结论?

生:饼的个数是双数时,就2个2个地烙;是单数时,先2个2个地烙,最后剩下3个时,就用烙3个的最优方法烙。

三、巩固运用

1、烙饼优化的方法,其实小到我们生活中的点点滴滴,大到经济建设、交通运输等行业都会面临合理安排的问题,不信咱们到餐厅去看一看:出示书上做一做的第一题。

学生了解题意后思考安排。

2、由于你们的合理安排,三位客人满意地走出了餐厅,临走时给大家留下了2道题,因为他们深信你们一定能解决的。请看:大屏幕出示:

(1)烙熟一张饼需要6分钟(正反面各3分钟),一个锅一次最多能放10张饼,要烙15张饼,应该怎样安排才能用时最少?

(2)妈妈用平底锅煎鸡蛋,一次最多能煎3个。煎熟一个鸡蛋需要3分钟(正面2分钟,反面1分钟)。妈妈煎5个鸡蛋,最少要用多少分钟?

四、小结

这节课我们研究了什么,从中大家感悟到什么?

说的真好,合理的安排事情可以提高效率,节省时间,这就是优化问题,我国的大数学家华罗庚在这方面可是做出了巨大的贡献,他提出的优选法已经广泛地应用于我们的生产和生活中了,下节课我们将继续研究!

烙饼问题教学设计 篇4

教学目标

基础目标

1.通过简单的实例,初步体会运筹思想在解决实际问题中的应用。

2.认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

发展目标

1.通过实例理解优化的思想,形成从多种方案中寻找最优方案的意识,提高解

决问题的能力。

2.感受数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题

教学重点:体会优化思想

教学难点:理解烙3张饼的最佳方法。

教学准备课件制作、确定分组形式

教学形式自主探究、小组合作(组内异质,组间同质,按学生能力由低→高依次编号①②③④)

教学过程

小班特征活动预设

引入

一、课前谈话,激发兴趣。

1.同学们,人有两大宝,你知道是什么吗?猜猜看。(双手和大脑

2.说得非常正确,今天我们就用自己的双手合大脑来解决生活中的一个数学问题,好不好?

二、创设情境,解读信息。

1.(板书:饼)饼,你吃过吗?吃过哪些饼呢?

2.(板书:烙)“烙”,是指放在器物上烤熟的意思,烙饼是把饼放在器物上烤熟。这节课,我们一起来研究和学习烙饼问题。

三、自主探究,研究烙法。

探究双数张饼的最优烙法

1.课件出示图:这位阿姨家今天来了好几位客人,阿姨要烙饼招待客人,我们一起帮阿姨烙饼好吗?你从图中读懂了哪些数学信息?(最多烙2张、两面都烙、每面3分钟)

(1)烙一张饼最快要几分钟呀?你是怎么想的?请同学们把一只手当饼,数学书当锅,一起演示烙的过程。

嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了。

烙了计策?听到几声嗤啦声,烙了几次?

(2)烙两张饼最快要几分钟呢?最快是什么意思?

谁来演示?

(3)为什么烙一张饼和烙2张饼的时间都是6分钟(一样多)呢?可以同时烙,同时烙有好处吗?“同时”这两个字用得好。老师给他写下来

现在,我们一起来烙2张饼(嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了,听到几声嗤啦声,烙了几次?)

(4)你可以将烙饼的过程写下来或画下来吗?试试看。

2.(1)有了刚才的经验,烙4张饼最少需要几分钟呀?你又是怎么想的'?

(2)同桌再用双手做饼,来烙4张饼,开始!学生动手操作4张饼的烙法。请同学上台演示。烙了几次?

3.(1)现在我们已经有很多烙饼经验了,烙6张饼要几分钟呢?你又是怎么想的?(6+6+6=18分钟)

(2)谁愿意到黑板上用手做饼,烙给大家看一看。

指名学生上台,在黑板上画好的圆圈里演示6张饼的烙

法。

4.总结偶数张饼的烙法:两张两张同时烙。

请你仔细观察偶数饼的烙法:你发现了什么秘密?

四、合作交流、探究烙法。

烙三张饼问题的优化

1.爸爸回来了,那3张饼最少要几分钟呢?要达到最快,我们要考虑什么?把象棋当作饼,摆一摆,并把你的过程写下来或画下来。

要求:(1)先独立思考

(2)小组讨论。

小组轮流说说自己是怎么安排的?烙了几次?自己的方案一共需要多长时间烙完?

记录员负责纪律你们组的方法。

汇报员准备汇报

【预设】方法一:一张一张地烙,共18分钟;

方法二:先烙两张,再烙一张,共12分钟;

方法三:先烙1、2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2、3号饼的的反面,有9分钟。

【机动】如果学生想不到第三种方法则进行启发引导:

在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪费时间了,问:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的两张饼呢?

(3)讨论:

①上面三种方法是否都可行?哪种方法最好?为什么?

②为什么这样烙只需要9分钟?一开始的烙法有什么问题?

(一开始的烙法中,烙第三张饼时锅的另一半资源(烙的位置)浪费了。而交替烙则没有这个问题。)没错。交替烙最大限度地使用了锅的资源,从而节约了烙的时间。

小结:我们称这种最省时间的方法为烙3张饼的“最佳方法”

(4)好,一个同学的2只手当作2张饼,另一个同学的1只手当作1张饼,把2本书叠在一起当作锅,同桌合作烙3张饼,开始!同桌合作,开始烙饼。

2.下面该烙几张饼啦,5张饼,四人小组讨论一下,看哪个小组烙的最快。

预设:方法一:3+29+6=15分钟

方法二:演示同学们看明白了吗?

烙饼问题教学设计 篇5

一、激情导课

1、创设情境

老师刚刚买了一个电饼铛,所以想中午烙饼吃,可中午的时间不长,咱们一起来想想到底怎么烙才能省时间。

二、探究新知

读题:每次只能烙两张饼,两面都要烙,每烙一面需要3分钟,我家有三口人,每人一张饼,需要多长时间?

1、研究烙饼方法

(!)如果烙一张需要多长时间呢?(生思考后回答)

出示表格:

饼数烙饼方法最少需要时间(分)

(2)如果烙两张呢?

生:3×2=6分钟,因为每次能烙2张饼,(同时烙2张)3+3=6分钟

师:如果要烙3张饼,最少需要多少分钟?适时提醒,如果想要更省时间,就要保证锅别闲着,总让里面放两块。

预设:生:先两张两张烙,最后烙剩下的一张,需要12分钟。

生:演示,讲述:正1正2正3反2反1反3 3+3+3=9分钟

师点评,谁的方法比较好。

2、拓展探究

然后继续烙4张,5张饼…说说发现了什么?

饼数烙饼方法最少需要时间(分)

2同时烙2张饼3+3=6 3快速烙饼法3+3+3=9 42张2张烙6+6=12 5先2张2张烙,剩下的3张用快速烙饼法。6+9=15 62张2张烙,烙3次。6+6+6=18 7先2张2张烙,烙2次,剩下的3张用快速烙饼法。6+6+9=21 8

9 10 3、探究规律

1)仔细观察表格,思考:烙饼的张数不同烙饼的方法有什么不同?

得出结论:1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。

2)如果烙1张饼需要多长时间?每多烙1张饼,时间就增加多少时间?烙饼的`张数与烙饼所需时间有什么关系?

得出结论:每多烙一张饼,时间就增加3分钟。

用饼数乘烙一面饼所用的时间,就是所用的最短时间。

板书:(饼数×3=所需最少的时间。)(饼数>1

三、课堂检测

1、如果饼数是双数,用什么方法烙饼?如果饼数是3张,用什么方法烙饼?

如果9张饼用什么方法烙饼?2、烙5张饼需要多少分钟?9张饼呢?11张饼呢?

烙饼问题教学设计 篇6

【教学目标】

1、通过教材情境图中展示的信息和需要解决的问题,寻找解决问题的最优方案。

2、让学生经历从解决问题的多种方案中寻找最优方案的过程,理解优化的思想。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

4、通过各种数学活动,使学生深深地感受到数学与生活的密切联系,逐渐养成合理安排时间的良好习惯。

【教学重点】

体会优化思想、探究解决问题的最优方案。

【教学难点】

烙3张饼的最优方案。

【教学过程】

一、创设情境、生成问题

1、猜谜语:

同学们,你们喜欢猜谜语吗?

投影出示:世界上最快而又最慢,最长而又最短,最平凡而又最珍贵,最易被忽视而又最令人后悔的是什么?

2、你们知道关于“时间”的名言吗?

3、这些名言说明什么?

4、小结:既然时间这样珍贵,那么在做事情之前我们就应该充分考虑怎样通过合理的安排以最短的时间来解决问题,以提高做事的效率。

5、揭示课题:那今天我们就一起来研究——烙饼问题。(板书:烙饼问题)争取用最短的时间解决这里面的问题,提高做事的效率。

二、探索交流、解决问题

(一)初步感知,引发学生思考。

(师课件出示主题图:)

1、观察屏幕,你们发现了那些数学信息?

2、每次只能烙2张饼是什么意思?

3、那烙1张饼至少需要多少分钟?你是怎样烙的?那6分钟是不是最短的呢?

4、2张呢?

(1)12分钟——一张一张的烙。

(2)6分钟——2张同时烙。

你觉得哪种方法好?为什么?(省时间)

像这样的能够同时做的事情,我们放在一起做了,就可以节省时间,在最少的时间完成事情,从而提高了效率,这在数学上我们称为优化。

5、小结:我们为了节约时间,能同时烙2张饼一定要烙2张。要是一张一张的烙,熟了一张再烙下一张,肯定是浪费时间。

[设计意图:通过对烙1张饼与烙2张饼的讨论,使学生对烙饼情境和要求有了深入的了解,初步感知要想省时必须充分利用锅内的位置,能同时完成的尽量同时完成。]

(二)烙3张饼,寻找最优方案。

1、烙3张饼最少需要多长时间呢?

2、自主探究,小组合作交流,如果需要可以用圆形纸片当饼帮助我们说明问题。

3、小组汇报:

(1)用18分钟:你们是怎样想的'?

一张一张地烙,3张需要烙6次,共需6×3=18分钟。

(2)用12分钟:

①你是怎样烙的?

先同时烙好饼1、饼2,需要6分钟,再烙饼3,需要6分钟,总共烙了4次,花了12分钟。

(3)用9分钟:

第一次先烙饼1、饼2的A面,需要3分钟;第二次烙饼2的B面和饼3的A面,需要3分钟,第三次烙饼1和饼3的B面,也需要3分钟,总共烙了3次,用了9分钟。

(4)也许大多数同学的答案都是方法二,或方法一,当想不出方法三时,我再引导学生想出方法三。

引导学生对比烙2张饼的方法和学生烙3张饼的方法二,锅里的饼的数量,发现:在烙3张饼时,本来一次能烙两张饼的锅只烙一张饼,既浪费了能源,又浪费了时间。同学们能不能想出让锅里每次都烙2张饼的方法呢?

小组再次合作,想出最优方法。(学生上台演示)

(5)你觉得用时还能不能再短?为什么?

4、比较12分钟和9分钟两种烙饼方法。

①这种方法为什么比上一种方法省时间呢?

②小结:看来,要想省时间就得保证锅里总是同时烙2张饼。不能有时烙2张有时烙1张。

[设计意图:通过观察、对比发现如果锅里每次都同时烙2张饼,最大限度的利用锅里的空间就不会浪费时间了。找到优化的根源,体会优化思想在解决实际问题中的作用,同时培养学生严谨求实的科学精神。]

(三)发现规律,深化认识。

1、烙4张、5张、6张饼……怎样烙所用的时间最少?

2、生独立思考或合作交流。

3、汇报探究结果

4、教师出示表格(从1张―――到9张)

问:“42分钟内最多能烙几张饼?”

5、师:“烙饼的张数与最后的总时间有什么关系?”

引导学生说一说,然后教师板书:

“总饼数×3=最短总时间(1张饼除外)

师:今天,我们学习了烙饼问题,不仅可以节约时间,还可以提高做事的效率。在我们的生活中还有很多这样的事情可以合理安排。请看:

三、巩固应用、内化提高

1、出示教科书114页做一做

假设两个厨师做每个菜的时间都相等,应该按怎样的顺序炒菜?说说你的理由?

2、平底锅煎鱼:一只锅每次最多煎两条小黄鱼,煎1条鱼需要4分钟(正、反面各2分钟)。煎7条鱼最少需要多少时间?怎样煎?

3、复印5张文字资料,正、反面都要复印。如果一次最多放两张,那么你认为最少要复印多少次?你是怎么安排的?

(说清楚先印2张,需要2次,再印3张有需要3次,一共需要5次)

四、回顾整理,反思提升

师:“通过这节课的学习,你们有什么收获?”学生说一说。

师:“同学们学到了那么多的知识,老师非常高兴,你们高兴吗?课下可以把今天我们学到的知识结合实际生活写一篇数学周记,让我们在运用知识中成长。好吗?下课!