返回首页
智远网 > 短文 > 教案 > 正文

《轴对称》教学反思

2025/11/15教案

此篇文章《轴对称》教学反思(精选6篇),由智远网整理,希望能够帮助得到大家。

《轴对称》教学反思 篇1

对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。

本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。

一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。

这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。

二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。

这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。

三、想办法做出以各轴对称图形、并分组展示自己的作品。

这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。

1

本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。

2、五年级数学下册《因数与倍数》的教学反思

《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。

(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。

(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。

(3)因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。

虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:

11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?

特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。

3、五年级数学下册《合数与质数》的教学反思

在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。 2

一、学生参与面广,学习兴趣浓。

新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数与合数的不同之处,以操作代替教师讲解,激发了学生的学习兴趣和求知欲,使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。

二、从学生的角度出发,把课堂的主动权还给学生。

课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。

三、点燃学生智慧的火花,让学生真正活起来。

爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。

4、五年级数学下册《公因数和最大公因数》的教学反思

《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并 3

且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。

对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。

一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。 《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:

“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?” 学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的`设计贴近学生的最近发展区,为课堂的有效性奠定了基础。

二、提供把学生置于问题情景之中的机会,营造一个激励探索和理解的气氛 “对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?

三、让学生进行独立思考和自主探索

通过学生的猜测,我把学生的提出的问题进行了整理:

(1) 什么是公因数与最大公因数?

(2) 怎样找公因数与最大公因数?

(3) 为什么是最大公因数而不是最小公因数?

(4) 这一部分知识到底有什么作用?

我先让学生独立思考?然后组织交流,最后让学生自学课本

这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。

5、五年级数学下册《最小公倍数》的教学反思

《最小公倍数》这节课,如何让学生的学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。我是从以下几个方面来做:五年级下册数学反思

一、创设情境 激发兴趣,使学生主动的参与到学习中去。

“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。我从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。使这些枯燥的知识变成鲜活、灵动数学,让学生在解决问题的过程中既学到了知识,又体念到了学数学的快乐。五年级下册数学反思

二、培养学生自主探究的能力。五年级下册数学反思

教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。在研究最小公倍数的意义时,设计了例举法找最小公倍数、最小公倍数猜想、分解质因数比较,一系列开放的数学问题,让学生有足够的思维活动空间来解决问题,自主地进行探究性活动,使学生体念到数学数学就在我们的身边。

三、挖掘不足 有待改进

1、课初的情境创设虽考虑到与例题之间的联系,但过渡得不够好。

2、如何激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。

《轴对称》教学反思 篇2

新课程标准指出:学生是学习的主体,要让学生成为真正的主人,就必须在数学活动中学习数学,也就是在创造数学中学习数学。本课从具体的的图片中,让学生自己发现问题、解决问题,体验探索成功的快乐;通过动手操作,小组讨论来突破本节课的难点;通过有层次的练习,提高学生解决问题的能力,巩固所学知识。

教学时首先让学生感知“对称”, 通过展示文昌的名人宋庆龄的雕像拉近与学生的距离、火箭、山的倒影的'图片欣赏生活中的对称美,增强美感,让学生体会数学与美的和谐统一,不论是在自然,还是建筑、科学,甚至是日常生活中对称广泛存在,激发学生的学习兴趣,引出本节课的课题。然后让学生通过剪纸,初步感受轴对称图形是一个对称图形,师生共同探索所剪的图形的共同特征,从而归纳出轴对称图像的概念。让学生举例生活中的轴对称图形,学生举的例子很有限,大部分都是数学的几何图形,生活中的轴对称图形例子很少,他们在小学就学过这相关的内容了,说明是老师在课堂上的指引不够。这没有能达到教学设计使学生从自己的生活经验出发,体会轴对称现象在现实生活中的广泛应用的教学目的。若是抓住学生举的三角形是轴对称图形来强调轴对称图形的概念会更好些。让学生欣赏老师准备的轴对称图形能让学生感知生活中的轴对称图形普遍存在,加深理解轴对称图形的概念。学生能基本理解轴对称图形的概念,认一认这环节完成的较好。比一比这环节原本是设计小组比赛的,但是这题目团结协作实施起来较难,所以临时更改为个人比赛,有些学生没有注意审题,直接在课本上画对称轴,有些同学描下图了,但是没有通过折叠去找出对称轴,整个环节花费时间较多,所以后面的课就上得很紧!想一想,归纳出两个图形成轴对称的概念,认一认,两个个环节完成的较好。轴对称图形和轴对称的联系和区别,是整节课的难点,为了突破这难点,让学生讨论,交流。但是联系和区别没有小组能叙述完整,特别是联系的第二点,我用所剪的轴对称图形分析,体现他们之间的联系,区别用认一认中的图2去分析,以此突破难点。

本节课主要特点:

1.突出动手实践是学生学习数学的重要方式。

本课教学的关键就是使学生理解图形对折后“完全重合”的含义。在教学中,先让学生欣赏雕像,火箭、山的倒影,感受“对称”。通过剪纸,初步认识到“完全重合”就是左右两边“大小、形状完全一样”。通过观察、实践、思考、交流等活动,让学生进一步加深对 “轴对称图形”概念的理解,通过试一试,加深两个图形称轴对称概念的理解。

2.练习设计循序渐进,形式多样。

在练习这一环节我设计了认一认、比一比、做一做、试一试三个有趣的活动,层层递进,帮助学生及时巩固、运用所学知识。特别是在“做一做”这一环节中,让学生利用手边的材料,充分发挥想象力、创造力,动手“剪”出一个轴对称图形。在这一过程中,学生手脑并用,以“动”促“思”,轴对称图形的特征被深深地印在脑海里,空间想象能力得到加强,创新意识得到培养,并且体验到成功的快乐。

3.借助于多媒体有效提高教学效率。

利用多媒体课件图、文、声、像并茂的特点,向学生展示了生活中的对称现象。美妙的图形深深地吸引了学生,学生的思绪因插上想象的翅膀而飞扬,真切地感受到对称的美。以多媒体展示学习资料,帮助学生辨析轴对称图形,效果佳,效率高。

本节课最大感受是上得较拘谨,面对陌生的学生,引导方式需要多样化,探究合适的提问方式,让课堂更富有激情,课堂更流畅!课堂时间处理不够合理,前松后紧,总结较简单!

《轴对称》教学反思 篇3

轴对称图形这堂课是人教修订版二年级下册的内容。在教学中,借助日常生活中的对称现象,通过观察、操作,使学生直观认识轴对称图形,能辨认轴对称图形。使学生能够用轴对称图形的知识解决简单的实际问题,让学生在合作过程中培养观察能力、动手操作能力,创造能力等,体验数学的美,进行审美教育。基于对低年级学生学习“图形与几何”领域内容特点的认识,本堂课的教材内容在编排上降低了学习内容的难度,跟以前的教材相比,主要体现为修订版中不要求画出图形的对称轴,删除了在方格纸上画出轴对称图形的另一半的作图内容。

基于难度的降低,而学生在日常生活中又有着对于对称的原有认知的基础,利用这些经验,本堂课的教学教师要关注到学生的学习起点,可以适当放手让学生在小组内进行合作学习,进一步体验和感受轴对称图形相关知识。本堂课的教学我先以一副不对称的眼镜出示,让学生想想要不要买下来,学生们一致认为不要买,说这副眼镜是不对称的。这样的引入既吸引学生的眼球,又能自然引入课题。接着,小组合作讨论课件出示的一些图片是否对称,说不准的打“?”并讨论可以想什么方法来验证?学生自然而然地想到可以通过对折这个方法。对折后,两边完全重合,才是对称,得出本节课的重点。接着让学生在实际操作中深入认识轴对称图形,通过动手折一折、剪一剪得出对折的这条折痕叫做对称轴。整堂课的`教学以大量的、丰富的素材让学生直观体验,让学生在经历操作、观察、想象和交流等活动发展空间观念。不过在教学中还可以加强的是:让学生在剪纸过程中,能做到思考与操作相结合,体现数学化。为了保证操作的有效性,不仅仅让学生们只是剪纸,可通过合适的问题使学生深入体会其中的教学目的。如“为什么要对折纸?”“为什么只在一边画图?”“观察展开的剪纸上的折痕,你能发现什么?”这些问题可以使课堂的操作活动不

《轴对称》教学反思 篇4

本节的教学时间较为充裕,这主要是考虑到要给学生时间去自主探索、动手实践,如果不能给这一过程以足够的时间,那么学生自己的探索和发现很可能流于形式,不利于学生全面地获得数学知识。

一、教学建议

1、从现实生活中的大量直观图形入手,让学生在观察、动手操作的.过程中掌握轴对称的概念。教学中可向学生提供丰富的素材。除书上提供的素材外,教师可以补充一些生活中丰富多彩的轴对称图形供学生观察。而这些图形从互联网上可以容易获得,用电脑展示方便效果也很好。

2.在教学时,可根据实际情况取材,不必拘泥于教材,关键是让学生在观察实践中感受概念,探索性质。

二、教学反思

教材安排通过“看、想、画、折、剪”的一系列活动,抽象出轴对称图形的特征,从感性到理性,从实践到理论,再用实践检验理论,层次分明,循序渐进。《新课程标准》要求教师做教材的开发者和建设者,使教材的教育价值和智力价值得到充分的发挥。因此,我将教材与学生的实际进行了有机整合。一是利用教材资源,开发贴近学生现实生活的内容。力求呈现给学生充分的感性材料。二是利用新教材独特的视角,开发利于揭示数学实质的内容。本节课,每一个场景都隐涵着数学思想,数学方法,且始终以“做数学”为主旋律,不断创设问题情境或数学活动,鼓励学生“做数学”,让学生在观察、操作、合作、探索中获得知识,丰富体验,求得发展。

新授部分以对称图形一路观赏引出各类图形,要求学生根据第一环节“对称、重合”的思想进行分类,且在分类的过程中学生自觉地拿起图形观察、思考、折叠,从中体悟到轴对称图形的特点;接着,让学生操作、验证、描述,亲身体验、直观感受;最后教师引导观察,直观演示对称轴;在学生认识对称轴基础上安排“判断对称轴”的练习,对新学知识加以巩固。

《轴对称》教学反思 篇5

《轴对称》教学反思合集15篇

身为一名刚到岗的教师,教学是我们的工作之一,教学的心得体会可以总结在教学反思中,那要怎么写好教学反思呢?以下是小编精心整理的《轴对称》教学反思,仅供参考,希望能够帮助到大家。

《轴对称》教学反思 篇6

《轴对称图形》是人教版十一册第四单元的教学内容,为概念课。这一课时的教学内容是在学生学过基本几何图形的基础上进行教学的,这节课双基训练要求是

1、初步学会判断一个图形是否轴对称图形。

2、学会画一个轴对称图形的对称轴。

曾经何时,我们数学老师们都在思索一个问题:为什么学生老不爱学数学?上海市1998年的一份调查揭示:92%的学生不爱学数学。即使数学考试成绩很好的学生也不爱数学。我们曾经都把这归纳于数学学科是抽象的,知识是枯燥的。现在在新课程理念的昭示下,我们恍然大悟,我们过去苦苦追求的让所有学生都爱上数学原本根本就不可能的,因为我们让学生学习的教材内容,原本就没有建立在学生的生活经验基础之上,我们的数学学习内容根本就是为了培养数学家的东西。这就决定让学生喜爱数学只能是空中楼阁。记得荷兰的教育家拂雷登塔尔提出:“数学是现实的,学生要从现实生活中学习数学,再把学到的数学应用到现实中去。”新制定的数学课标对数学教学也提出了要求:数学学习的内容与形式必须建立在学生的生活经验之上。结合以上理论,也简要谈谈本人对数学课课改理念的粗浅理解,我觉得新理念下的课堂教学模式要做到:

1、让学生觉得课堂上他是快乐的。

2、让学生能够用自己喜欢的方式去探究、应用数学。

3、数学的'学习不能仅仅着眼于追求单一的分数,应该追求一种更高一层次的对学生的发展有所作用的东西。所以,本节课我对教材做了一些偿试,在把握教材双基要求的同时,教学设计上力求体现“生活数学”、“美与快乐数学”这二条基本理念,力求让学生在数学学习过程中产生“数学是美的、数学是快乐的、数学是有用的、数学在生活中”的情感体验,力求让学生用快乐的方式去做数学,用快乐的方式去用数学。

根据以上设计理念,本节课我设计了:猜——折——画——摆——展五个环节。对于概念的揭示摒弃了过去概念课繁琐的推理过程,改之为游戏、猜想、验证的学习过程。对概念的应用,也改变已往简单的作业本练习方式,改之为轻松活泼的活动。这样的设计,目的为了使学生在轻松愉快的气氛中、在活泼的动手实践中发展思维,丰富眼界,培养创新意识,提高实践能力,最重要的是让学生充分地感受到数学的美与数学的快乐,让学生不再惧怕数学,不再把数学学习当成是老师要他学的东西。

本节课中,第一个环节中的游戏的设计,在为创设情境的同时,也让学生在游戏中唤醒生活记忆,初步感知数学概念的生活原形。为猜测轴对称图形的特征搭路铺桥。第二个环节与第三个环节的折与画,用手指比划,既是对概念的进一步感知,也是概念的初步应用。对新知起巩固作用。练习中用学生喜爱的“爱心”置换课本练习题毫无意义的图形以提高兴趣。“爱心”后面“抽象的眼睛”的对称轴学生不容易画,是让学生明白画对称图形的对称轴乃至思考问题要着眼于整体,同时也是为了下面摆轴对称图形来点启发。第四个环节介绍轴对称图形的应用与摆轴对称图形,在使本课的学习内容得以综合应用,拓展提高的同时,同时体现一些人文的东西和学科综合的东西在里头,也使数学学习与艺术创造有机结合,提高学生创新能力与创造能力,让数学回归于生活,就用于生活。第五个环节的展示,是为了让学生在展示中体验成攻感受,同时也为了在交流中从他人的成攻的作品中得到一些启示,实现不断创新。最后,对学生课后提的二点要求,是作业的生活形式化。让学生用最乐意的方式实现课堂的延伸。