返回首页
智远网 > 短文 > 教案 > 正文

《鸽巢问题》教学设计

2025/11/23教案

此篇文章《鸽巢问题》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《鸽巢问题》教学设计 篇1

一、教学内容

教材第6

二、教学目标

1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“鸽巢问题”的灵活应用感受数学的魅力。

三、教学重难点

重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

四、教学准备

多媒体课件

纸杯

吸管

五、教学过程

一、课前游戏引入。

师:孩子们,你们知道刘谦吗?你们喜欢魔术吗?今天老师很高兴和大家见面,初次见面,所以老师特地练了个小魔术,准备送给大家做见面礼。孩子们,想不想看老师表演一下?

生:想

师:我这里有一副扑克牌,我找五位同学每人抽一张。老师猜。(至少有两张花色一样)

师:老师厉害吗?佩服吗?那就给老师点奖励吧!想不想学老师的这个绝招。下面老师就教给你这个魔术,可要用心学了。有没有信心学会?

二、通过操作,探究新知

(一)探究例1

1、研究3根小棒放进2个纸杯里。

(1)要把3枝小棒放进2个纸杯里,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。(教师板书)(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3根小棒放进2个纸杯时,同学们表现得很积极,发现了“不管怎么放,总有一个纸杯里放进2根小棒)

2、研究4根小棒放进3个纸杯里。

(1)要把4根小棒放进3个纸杯里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个纸杯里至少有2根小棒)

(4)你是怎么发现的?

(5)大家通过枚举出四种放法,能清楚地发现“总有一个纸杯里放进2根小棒”。

师:大家看,全放到一个杯子里,就有四个了。太多了。那怎么样让每个杯子里都尽可能少,你觉得应该要怎样放?(小组合作,讨论交流)(每个纸杯里都先放进一枝,还剩一枝不管放进哪个纸杯,总会有一个纸杯里至少有2根小棒)(你真是一个善于思想的孩子。)

(6)这位同学运用了假设法来说明问题,你是假设先在每个纸杯里里放1根小棒,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(4÷3=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是

2枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

3、类推:把5枝小棒放进4个纸杯,总有一个纸杯里至少有几根小棒?为什么?

把6枝小棒放进5个纸杯,总有一个纸杯里至少有几根小棒?为什么?

把7枝小棒放进6个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?

把100枝小棒放进99个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?

4、从刚才我们的'探究活动中,你有什么发现?(只要放的小棒比纸杯的数量多1,总有一个纸杯里至少放进2根小棒。)

5、小结:刚才我们分析了把小棒放进纸杯的情况,只要小棒数量多于纸杯数量时,总有一个纸杯里至少放进2根小棒。

这就是今天我们要学习的鸽巢问题,也叫抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?小棒相当于我们要准备放进抽屉的物体,那么纸杯就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。

小练习:

1、任意13人中,至少有几人的出生月份相同?

2、任意367名学生中,至少有几名学生,他们在同一天过生日?为什么?

3、任意13人中,至少有几人的属相相同?”

6、刚才我们研究的是小棒数比纸杯多1的情况,如果小棒比纸杯数多2呢?多3呢?是不是也能得到结论:“总有一个纸杯里至少有2根小棒。”

《鸽巢问题》教学设计 篇2

一、教学内容:

教科书第68页例1。

二、教学目标:

(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点

教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程

(一)候课阅读分享:

同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课

好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

(三)民主导学

1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?

要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的'。你说对了吗?

课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

方法二:用“假设法”证明。

对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)

方法三:列式计算

你能用算式表示这个方法吗?

学生列出式子并说一说算式中商与余数各表示什么意思?

2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

这道题大家可以用几种方法解答呢?

3种,枚举法、假设法、列式计算。

3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

4、表格中通过整理,总结规律

你发现了什么规律?

当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

5、简单了解鸽巢问题的由来。

经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

(四)检测导结

好,我们做几道题检测一下你们的学习效果。

1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

4、育新小学全校共有2192名学生,其中一年级新生有367名同学是2008年出生的,这个学校一年级学生2008年出生的同学中,至少有几个人出生在同一天?

(五)全课总结今天你有什么收获呢?

(六)布置作业

作业:两导两练第70页、71页实践应用1、4题。

《鸽巢问题》教学设计 篇3

教学目标:

1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

教学过程:

一、创设情境、导入新课

1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)

2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。

二、合作探究、发现规律

师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)

1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。(PPT)总有:一定有至少:最少

师:这个结论正确吗?我们要动手来验证一下。

(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?

探究之前,老师有几个要求。(一生读要求)

(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)

第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的'摆法)

第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)

师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。

师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)

(4)通过比较,引出“假设法”

同桌讨论:刚才我们把4种情况都列举出来进行验证,能不能找到一种更简单直接的方法,只摆一种情况就能证明这个结论是正确的?

引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(PPT演示)

(5)初步建模—平均分

师:先在每个笔筒里放1支,这种分法实际上是怎么分的?

生:平均分(师板书)

师:为什么要去平均分呢?平均分有什么好处?

生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)

师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?

板书:4÷3=1……11+1=2

(5)概括鸽巢问题的一般规律

师:现在我们把题目改一改,结果会怎样呢?

PPT出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?……(引导学生说清楚理由)

师:为什么大家都选择用假设法来分析?(假设法更直接、简单)

通过这些问题,你有什么发现?

交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

过渡语:师:如果多出来的数量不是1,结果会怎样呢?

2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?

(1)同桌讨论交流、指名汇报。

先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?

再让一生说出5÷3=1……21+1=2

师:你们同意哪种想法?

(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?

(3)明确:再次平均分,才能保证“至少”的情况。

3、教学例2

(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。

(2)独立思考后指名汇报。

师板书:7÷3=2……12+1=3

(3)如果有8本书会怎样?10本书呢?

指名回答,师相机板书:8÷3=2……22+1=3

师:剩下的2本怎么放才更符合“至少”的要求?

为什么不能用商+2?

10÷3=3……13+1=4

(4)观察发现、总结规律

同桌讨论交流:学到这里,老师想请大家观察这些算式并思考一个问题,把书放进抽屉里,总有一个抽屉里至少放进了几本书?我们是用什么方法去找到这个结果的?(假设法,也就是平均分的方法)用书的数量去除以抽屉的数量,会得到一个商和一个余数,最后的结果都是怎么计算得到的?为什么不能用商加余数?

归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)

三、巩固应用

师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。

1、做一做第1、2题。

2、用抽屉原理解释“扑克表演”。

说清楚把4种花色看作抽屉,5张牌看作要放进的书。

四、全课小结通过这节课的学习,你有什么收获或感想?

《鸽巢问题》教学设计 篇4

一、单元教材分析:

本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

二、单元三维目标导向:

1、知识与技能:

1、引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感态度与价值观:

(1)体会数学与生活的紧密联系,体验学数学、用数学的'乐趣。

(2)理解知识的产生过程,受到历史唯物注意的教育。

(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。

三、单元教学重难点

重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。 难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

四、单元学情分析

“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

五、教法和学法

1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

《鸽巢问题》教学设计 篇5

教学内容

审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。

设计理念

《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析

《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。

学情分析

可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。

教学目标

1、通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。

2、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3、通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点

经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

教学难点

理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

教具准备:相关课件相关学具(若干笔和筒)

教学过程

一、游戏激趣,初步体验。

游戏规则是:请这四位同学从数字1、2、3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。

[设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。]

二、操作探究,发现规律。

1、具体操作,感知规律

教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?

(1)学生汇报结果

(4,0,0)(3,1,0)(2,2,0)(2,1,1)

(2)师生交流摆放的结果

(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。

(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)

[设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。]

质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?

2、假设法,用“平均分”来演绎“鸽巢问题”。

1.思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?

学生思考——同桌交流——汇报

2.汇报想法

预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。

3.学生操作演示分法,明确这种分法其实就是“平均分”。

[设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。]

三、探究归纳,形成规律

1、课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。

[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]

根据学生回答板书:5÷2=2……1

(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)

根据学生回答,师边板书:至少数=商+余数?

至少数=商+1?

2、师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)

……

7÷5=1……2

8÷5=1……3

9÷5=1……4

观察板书,同学们有什么发现吗?

得出“物体的数量大于鸽巢的`数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。

板书:至少数=商+1

[设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。]

师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

四、运用规律解决生活中的问题

课件出示习题、:

1.三个小朋友同行,其中必有几个小朋友性别相同。

2、五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。

3、从电影院中任意找来13个观众,至少有两个人属相相同。

[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]

五、课堂总结

这节课我们学习了什么有趣的规律?请学生畅谈,师总结

《鸽巢问题》教学设计 篇6

教学内容

人教版教材小学数学六年级第十二册“数学广角”例1及相关内容。

教学目标

(1)经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

(2)通过操作发展学生的类推能力,形成比较抽象的数学思维。

(3)通过“鸽巢问题”的灵活应用感受数学的魅力。

教学重点

经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

教学难点

理解“鸽巢问题”里的先“平均分”,再得出至少数的过程。并对一些简单实际问题加以“模型化”。

教具、学具准备

若干个纸杯(每小组3个)、笔(每小组4根)、扑克牌1副

教学过程

一、扑克魔术导入。

请同学们看我表演一个“魔术”。拿出一副扑克牌(去掉大小王)52张中有四种花色,请一个同学帮我从中随意抽5张牌,无论怎么抽,总有一种花色至少有2张牌是同花色的你相信吗?

你能说明其中的道理吗?老师不用看就知道“一定有2张牌是同花色的对不对?假如请这位同学再抽取,不管怎么抽,总有2张牌是同花色的,同意么?

其实这里蕴含了一个有趣的数学原理,这节课我们一起探究这个数学原理?(板书课题:鸽巢问题)

二、学习例1,列举探究

1、用枚举法深入研究4支笔放进3个纸杯里。

(1)要把4支笔放进3个纸杯里(纸杯代替),有几种放法?请同学们想一想,小组摆一摆,记一记;再把你的想法在小组内交流。(提醒学生左3右1与左1右3是同一种方法——不管杯子的顺序)

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)

(3)观察这四种放法,同学们有什么发现呢?(不管怎么放,总有一个纸杯里至少放有2枝铅笔)让孩子们充分地说。

板书:枚举法

(4)“总有”什么意思?(一定有)

(5)“至少”有2本是什么意思?(最少是2本,2本或者2本以上)。

2、假设法

①还可以这样想:先放3支,在每个笔筒中平均放1支,剩下的1支再放进其中的`一个笔筒。所以至少有一个笔筒中有2支铅笔

②思考:为什么要先在每个笔筒里平均放一支呢?

③继续思考:

6只铅笔放进5个笔筒,总有一个笔筒至少放进()支铅笔。

10只铅笔放进9个笔筒,总有一个笔筒至少放进()支铅笔。

100只铅笔放进99个笔筒,总有一个笔筒至少放进()支铅笔。

④通过刚才的分析,你有什么发现?谁能试着说一说?

只要铅笔数比笔筒多1,总有一个笔筒里至少放进2支铅笔。

3、介绍鸽巢问题的由来。

(1)抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷(Dirichlet)提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。

(2)总结:把m个物体任意放进n个抽屉中,(m>n,m和n是非0自然数),若m÷ n= 1……a,那么一定有一个抽屉中至少放进了2个物体。

三、巩固练习:

1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

2、随意找13位老师,他们中至少有2个人的属相相同。为什么?

四、总结全课:这节课你有哪些收获呢?

(上面点学生说一说,不全的老师补充)

五、设疑留悬念。

如果是把7本书放进3个抽屉里,那么总有一个抽屉至少放进()本书。

如果有8本书呢?

六、作业布置

1.完成教材课后习题p71第5、6题;

2.完成练习册本课时的习题。