《运算》教学设计
此篇文章《运算》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《运算》教学设计 篇1
教学内容:
人教版小学数学四年级下P33例1、2
教学目标:
1、使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2、使学生经历比较,猜测,论证,应用的过程,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。
3、使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
教学重点:
经历探索乘法交换律、乘法结合律的过程。
教学难点:
能运用乘法交换律、结合律进行简便运算。
教学过程
一、复习旧知,导入新课
(前几节课我们已经学习了加法的运算定律,那你们会应用这些定律来解决问题吗?)
出示:
在下列○内填上合适的运算符号。
4○10=10○4(2○3)○5=2○(3○5)。(让学生说出每一道题是运用什么加法运算定律。)
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;那么在乘法中是否也有这些运算定律呢?
3、导入新课。
谈话:带着我们的.猜测,今天我们就来研究乘法中的运算规律。
1、情景中感知乘法交换律。
出示例题。(略)
谈话:请同学们看主题图。图中的小朋友在干什么?你能列出乘法算式求负责挖坑,种树的一共有多少人吗?
学生列式:4×25=100或25×4=100。
提问:我们知道,每组里有4人负责挖坑,种树,一共有25个小组,可以列式4×25,也可以列式25×4。所以,这两道算式可以用什么符号联结?
板书:4×25=25×4。
2、举例验证。
谈话:我们知道4×25=25×4,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
(学生列出几个算式,在学生列出的算式中让学生分别说出左右两边得数是否相等,再写等号。)
3、总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?(每组算式等号两边的两个因数相同,积也相同,不同的是两个因数交换了位置。)
师:对,像这样两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。利用课件出示此规律
提示:你用字母来表示乘法的交换律吗?
板书:a×b=b×a。
提问:等式中的a和b可以分别表示什么数?
生:a和b可以表示任何不相同的数。
4、回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?
(学生可能想到:
1、根据一句口诀可以算两道乘法算式;二三得六。
2、用调换因数的位置再乘一遍的方法验算乘法等。教师根据学生回答用媒体演示相关内容。)
师:在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。
(二)探索乘法结合律。
1、初步感知。
谈话:刚才我们认识了乘法交换律,现在我们继续来研究乘法的运算定律。
出示例题。(略)
谈话:一共要浇多少桶水,你会列式计算吗?
组织学生交流。[选择列为(25×5)×2和25×(5×2)的同学板演]
(也选择25×2×5的同学。先分析这种让学生说说这种列式在题目中表示什么?通过分析让学生明白“25×2”列式没有意义,删除此列式。)
2、引导比较。
提问:两道算式完全一样吗?你发现了什么?(都是求一共要教多少桶水,都是把25、5、2三个数相乘,运算顺序不同,计算结果一样,两个算式也可以用符号连接)
板书:(25×5)×2=25×(5×2)
下面根据前面举例研究运算定律的方法,请大家同桌合作写一写,说一说,试着自己学习
课件出示:
合作讨论:
(1)等号两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。
(两个算式中都是三个因数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
请大家大胆猜测一下,是不是所有的乘法算式中,先把哪两个因数相乘,积都保持不变呢?
(2)举例验证:写出几组这样的算式,并算一算。
(3)你从这些算式中发现什么规律?用语言表述规律,并起名字。
(课件出示:三个数相乘,先把前两个数相乘,,或者先把后两个数相乘,它们的积不变,这叫做乘法的结合律。)
(4)如果用a、b、c分别表示三个因数,你能用含有字母的式子表示吗?
板书:(a×b)×c=a×(b×c)。
小组汇报。教师板书整理。
谈话:刚才我们通过观察—猜测—举例验证—得出结论,找到了乘法结合律,接下来请同学们应用我们今天学习的知识解决问题。
三、尝试运用,理解规律
1、根据乘法运算定律,在里填上适当的数。
15×16=16×
25×7×4=××7
(60×25)×=60×(×8)
125×(8×)=(125×)×14
4×8×25×125=(4×25)×(×)
请每一个同学回答出每一道题目是运用了乘法的什么定律。
2、下面每组算式的得数是否相等?如果相等选择你喜欢的一种算出得数。
4×9×257×125×811×(25×4)
4×25×97×(125×8)25×11×43、使用简便方便计算。
6×4×255×125×6×8
四、引发联想,鼓励探究
谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?
127—53——27—53
72÷3÷872÷8÷3
《运算》教学设计 篇2
学习目标:
1.熟练地掌握小数四则混合运算的运算顺序。
2.正确、迅速地进行整数、小数四则混合运算。
3.培养学生抽象概括能力。
4.培养学生认真审题,认真计算的良好学习习惯。
学习重点:掌握小数四则混合运算的.运算顺序。
正确、迅速地进行整数、小数四则混合运算。
学习难点:利用知识的迁移,总结四则混合运算的运算顺序。
学具准备:
预习准备
(3)我学过,我会做:
计算下面各题:(先说说运算顺序再计算)
3+15-1610÷2×516-7×2
129+(74-52)÷27×[25+(36÷3-7)]
上面几个题的运算顺序怎样?(小组内说一说。填一填)
一个算式里,如果只含同级运算,应从()往()依次计算;如果含有两级运算,要先算()法,再算()法;如果有括号,要先算()里面的,再算()外面的。复习整数四则混合运算顺序
新课自学尝试
(6)探究新知:(学习课本P74)
1、刘老师为给9月份的“文明之星”发奖品。用20元买三支钢笔和一个笔计本,每支钢笔3.5元,每个笔计本7.4元。还剩多少元?
自学提示:应先算什么?再算什么?
可以先算买3支钢笔后剩多少元,再算买笔计本后还剩多少元。列式:
计算时先算()法,再算()法
还可以先算买两种商品一共用了多少元,再算剩下多少元。列式:
计算时先算()里面的。
2、试一试:
7-0.5×14+0.833.6÷0.4-1.2×5
20.9+10.5÷(5.2-3.5)9.4×[1.28-(1.54-0.31)]借助生活情景,引入新知
探讨运算顺序
尝试计算
概括计算方法
展示研讨
(5)课堂总结
议一议:小数四则混合运算的运算顺序是怎样?
结论:小数四则混合运算的运算顺序和整数四则混合运算的运算顺序()。
达标检测拓展练习十六第3题、第5题(书上)巩固新知
课堂收获与不足这节课我学会了:
《运算》教学设计 篇3
教学类型:探究研究型
设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.
教学过程:
一、片头
(20秒以内)
内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。
第 1 张PPT
12秒以内
二、正文讲解
(4分20秒左右)
1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
第 2 张PPT
28秒以内
2.规律的验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
第 3 张PPT
2分10 秒以内
3.抽象概括: 通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前著名的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的'数学规律。
第 4 张PPT
30秒以内
4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
第 5 张PPT
1分20秒以内
三、结尾
(20秒以内)
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
第 6 张PPT
10秒以内
教学反思(自我评价)
学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好.
《运算》教学设计 篇4
教学目标:
1、使学生在解决问题的过程中感受小括号的作用,理解并掌握含有两级运算(有小括号)的运算顺序,并能正确计算。
2、在经历探索和交流解决实际问题的过程中感受解决问题的一些策略,学会用综合算式解决两三步计算的实际问题。
3、培养学生养成认真审题、独立思考等学习习惯,提升计算和解决问题的能力。
教学重难点:
1、掌握含有小括号的混合运算的顺序。
2、能合理地解决简单的实际问题,掌握解决问题的步骤和策略。
教学过程:
一、创设情景,提出问题
(出示情境图)
(一)、要解决这些问题,必须知道什么信息?
1、冰雪天地里,滑冰区的游人比滑雪区多几位?
2、在冰雪天地游玩的一共有多少位游人?
3、上周末冰雕区的门票收入是4000元,你能知道这一天冰雕区游客的人数吗?
(二)、出示情境图
从图中你可以获取哪些数学信息?(冰雕区上午有游人180位,下午有270位,每30位游人需要一名保洁员)
根据这些信息,你能解决什么数学问题?(让学生在草稿本上写下来,然后汇报)
估计会提出:1、上午和下午一共有几位游客?
2、下午比上午多几位游客?
3、上午需要几名保洁员?
4、下午需要几名保洁员?
5、下午比上午多派几名保洁员?
6、上午和下午一共派了几名保洁员?
(一步计算的问题指名学生口答)
二、自主探究、解决问题
这两个问题不能直接一步解答,该怎样解答呢?就是我们今天要来研究的问题。
要求下午比上午多派几名保洁员?你能不能通过算式把自己解决问题的过程表示出来呢?
1、学生独立尝试解答问题5
2、教师巡视,然后让不同解法的孩子板演(请板书的学生说说自己的思考过程,或者请其他的学生来猜猜这位同学的思考过程。)
270÷30=9 270÷30-180÷30 (270-180)÷30 270-180=90
180÷30=6 =9-6 =90÷30 90÷30=3
9-6=3 =3 =3
第三种方法介绍时提问:为什么要加括号?不加括号可以吗?
师小结:对呀,不加括号的话就要先算——,再算——就不符合我们要解决的问题了,这个时候就需要用括号把这一步括起来,这个算式才正确表示了我们要解决问题的方法步骤。
括号是用来改变运算顺序的。算式里有括号,要先算括号里面的。
3、同桌交流:我是怎么解答的?
4、比较两种算法的不同点。
师小结:看来,在解决问题时思考的角度不同,解决问题的方法也不同,计算的步数也不一样,有些实际问题用三步计算解决,也可以用两步计算解决,但是,不管怎样,最后的目的都是一致的`。
5、
三、多层训练、拓展创新
1解决问题6及p11 做一做(要求列综合算式解答)
①学生独立解答后集体校对:分析数量关系,理清解题思路
②比较两个含有括号的算式的相同点,得出:有括号的算式,要先算括号里面的。、
2、按照计算要求,下面的算式要不要加括号?怎样加括号?
①72 - 30 + 22 第一步算加法
②36+24 ÷ 6 第一步算加法
③58 - 6 × 7 第一步算乘法
④72 ÷ 2×6 第一步算乘法
⑤35÷ 5+2 ×4 第一步算加法
4、用递等式计算
72 -(30 + 22) (36+24 )÷ 6 35÷(5+2)×4
5、连线
401班同学游玩冰天雪地后,帮助工作人员整理冰雕区、滑雪区的场地,清扫景区内道路上的垃圾。每40平方米场地派1个同学。另外派16个同学分成2组去清扫景区道路。滑冰区占地1000平方米,冰雕区占地800平方民(信息以图文形式出示)
①1000÷40-800÷40 ①清扫道路的比整理滑冰区的少几人?
②16+1000÷40 ②整理冰雕区和滑冰区的一共有几人?
③800÷40 -16 ③整理冰雕区的人数比滑冰区多几人?
④(1000 +800)÷40 ④清扫道路和整理冰雕区的一共有几人?
先让学生搜集整理信息,然后根据所给的算式与相匹配的问题连线,分析数量关系,最后时间有多的话安排:让学生提出问题,并列出算式。
四、全课总结
今天这节课你有什么收获?在计算有括号的算时,你要提醒大家注意什么?
《运算》教学设计 篇5
教材分析
1.本节课之前,学生已经掌握了整数的四则计算,能进行连加、连减、加减混合以及连乘、连除、乘除混合等同级的两步运算的基础上来学习本节课的算式中没有括号只有乘法和加、减法的四则混合运算顺序和列综合算式解答两步计算的实际问题。这两部分的内容是相辅相成、有机结合的。
2.计算工具在当今社会和现实生活中已经普及了,人们已经不大需要使用纸笔进行大数目、多步数的计算。但是四则计算的原理与方法、混合运算的顺序、步骤仍然是本节课的重要教学内容。同时在学习中感受数学与生活之间的联系。
学情分析
本节课之前,学生已经掌握了整数的四则计算,能进行连加、连减、加减混合以及连乘、连除、乘除混合等同级的两步运算的'基础上来学习本节课的算式中没有括号只有乘法和加、减法的四则混合运算顺序和列综合算式解答两步计算的实际问题。在教学中学生比较难掌握的是列综合算式解答两步计算的实际问题。通过分析解决问题的思路结合解决问题的过程来突破含有乘法和加、减法的两步的运算顺序与书写格式,在学生交流中根据题意来理解和明确运算的顺序。
教学目标
理解综合算式的含义,掌握含有乘法和加、减法的两步的运算顺序与书写格式。
教学重点和难点
教学重点:掌握含有乘法和加、减法的两步的运算顺序与书写格式。
教学难点:列综合算式解答两步计算的实际问题
《运算》教学设计 篇6
学习目标:
(一)知识与技能目标
使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.
(二)过程与方法目标
经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性
(三)情感与价值目标
渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.
学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程
一、情境引入:
你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?
(1) = (2) =
二、探究学习:
(1)你能说出前面两道题的计算结果吗?
(2)你能验证分式乘.除运算法则是合理的.正确的吗?
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?
归纳小结:
(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。 即: ab ×cd =acbd 。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 即:ab ÷cd =ab ×dc =adbc 。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。即:( ab )n=anbn
三、典型例题:
例1、计算:1. . 2。( )
例2、计算、1. 2.
归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.
四、反馈练习:
(1) (2) .
(3) (a-4). (4)
五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?
(2)你认为买大西瓜合算还是买小西瓜合算?
七、课堂小结:
1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。
【课后作业】
班级 姓名 学号
1、 填空
(1) (2)
(3) (4)
(5) = (6)
(7)若代数式 有意义,则x的'取值范围是__________.
2、选择
(1)下列各式计算正确的是 ( )
A. ; B.
C. ; D.
(2)下列各式的计算过程及结果都正确的是 ( )
A.
B.
C.
D.
(3)当 , 时,代数式 的值为( )
A.49 B.-49 C.3954 D.-3954
(4)计算 与 的结果 ( )
A.相等 B.互为倒数 C.互为相反数 D.以上都不对
(5)若x等于它的倒数,则 的值是 ( )
A.-3 B.-2 C.-1 D.0
3、计算
(1) (2)
4、中考链接(选作题)
已知aba+b =13 ,bcb+c =14 ,aca+c =15 ,求代数式abcab+bc+ac 的值。
返回首页