返回首页
智远网 > 短文 > 教案 > 正文

分数的基本性质教学设计

2025/11/23教案

此篇文章分数的基本性质教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

分数的基本性质教学设计 篇1

一、故事引人,揭示课题。

1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?

讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

[一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

2.组织讨论。

(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的`分子和分母变化了,但分数的大小不变。

(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。

(3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。

3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

分数的分子和分母变化了, 分数的大小不变。

它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。

思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?

4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

[得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]

5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

二、比较归纳,揭示规律。

1.出示思考题。

2.比较每组分数的分子和分母:

(1)从左往右看,是按照什么规律变化的?

(2)从右往左看,又是按照什么规律变化的?

让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。

板书:

(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。

(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。

(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以 相同的数)

(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都除以 )

(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

(板书:零除外)

(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

[新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]

分数的基本性质教学设计 篇2

一、学习目标:

1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。

2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

3、培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。

二、重、难点:

理解和掌握分数的`基本性质。

三、学习过程:

一、导入

(1)3张同样的正方形或长方形纸片,(如下图)平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。

(2)你发现了什么?

二、学习新知

1、师板书 = =

2、观察三组分数,它们的分子和分母是怎样变化的?

分小组讨论,并填写

1 ( ) 2 1 ( ) 4

2 ( ) 4 2 ( ) 8

4 ( ) 2 2 ( ) 1

8 ( ) 4 4 ( ) 2

总结:分数的分子和分母同时 或 相同的数,分数的大小

3、应用

根据分数的基本性质,我们可以写出很多相等的分数

⑴的分子和分母同时乘2,等于( );同时乘4,等于( );

同时乘5,等于( );同时乘7,等于( )

总结: =( )=( )=( )= ( )

⑵= 说出你这样填的理由

= 说出你的理由

4、巩固练习

⑴第80页 (直接做在课本上)

⑵.在下面的括号里填上适当的数。

在下面的()里填上适当的数,在○里填上“×”号或“÷”,使等式成立

请你当法官(说明理由)

⑷下面的分数化成分母是12,而大小不变的分数

⑸下面的分数化成分子是6,而大小不变的分数

5、拓展练习

判断

1、分数的分子和分母同时加上或者减去相同的数,分数的大小不变。( )

2、把 的分子增加1,分母增加3,分数的大小不变。( )

3、把 的分子扩大2倍,分母缩小2倍,分数的大小不变。( )

思考:一个分数的分母不变,分子乘以3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?

分数的基本性质教学设计 篇3

一、教材分析:

本节课是在学生学习了分数与除法的关系的基础上来学习的,学生了解了分子相当于被除数,分母相当于除数。通过观察分子、分母的变化而分数值没变这样一个不完全归纳从而发现分数的基本性质。同时学生已经学过商不变规律再联系到分数与除法的关系也可以类推出分数的基本性质,分数的基本性质和商不变规律是一致的。学生需通过观察--探索--并抽象概括出分数的基本性质这就要求学生有较高的抽象概括能力。但这一要求对学困生来说就有点高了,所以在教学中应该两种情况都要考虑到。

二、教学目标:

1、理解分数的基本性质。(学生总结出分数的基本性质后通过抓关键词语并让学生对这些词语进行解释,同时还通过举反例来加深印象,在此基础上我还出示了几道判断题来加深对分数基本性质的理解)。

2、初步掌握分数基本性质的应用。(主要活动是利用分数的基本性质把一个分数化成分母不同而大小相等的分数,后面闯关的前三关都是分数基本性质的的运用。)

3、培养学生观察-探索- 抽象-概括的能力。(先让学生猜1/2、2/4、3/6的大小并动手涂色观察涂色部分是相等的于是得出1/2=2/4=3/6然后让学生观察这几个分数的分子、分母是如何变化的并试着用笔算算探索出其中的变化规律,并在老师的引导下抽象概括出分数的基本性质。)

4、渗透事物是发展变化的,感知变与不变的辨证关系。(沟通商不变规律与分数的基本性质之间的联系,得出分数的基本性质后让学生知道分数的分子、分母变化分数值不一定变化。)

5、本节重点是理解分数的基本性质及运用分数的基本性质;本节难点是抽象概括出分数的基本性质。(通过抓分数基本性质的关键词语及运用分数的基本性质来解决问题,运用分数基本性质闯关等活动来突出重点;通过让学生猜想及动手验证,并认真观察分子、分母的变化情况从而抽象概括出分数的基本性质这一活动来突破难点。)

三、学习目标:

1、课目内容分解表

序号知 识 点学习水平

识记理解应用 综合评价

1复习题引出猜想 - = - = -

2动手验证猜想- = - = - 并配合多媒体演示

√√√

3小组合作找规律√√

4得出规律√√

5运用规律解决问题√

6协作闯关活动√√

2、学习水平描述表

知识点学习水平描述语句

行为动词

1综合猜一猜- 、- 、- 哪个分数大猜想

2运用动手验证猜想实验验证

3理解应用探索变化规律探索

4综合得出规律总结

5应用运用规律解决问题运用

6综合应用协作闯关活动竞争协作学习

四、媒体的选择与运用

1、设计思想

由于本节内容是比较抽象的,所以我在具体操作过程中让学生变抽象为直观,这主要借助了我们的多媒体,用多媒体形象直观地演示这样一个过程,同时在运用分数的基本性质,我采用多形式的闯关活动避开了单纯的计算,让学生在活动中乐学、乐算。

2、媒体选用表

知识点媒体类型媒体的内容要点及来源媒体在教学中的作用

1大屏幕出示复习题(来源于电教馆资源库并用FLASH软件进行整合)方便

2网络投影播放涂纸条的教程(来源于天网里,也就是卫星接收的资源)生动、直观

3大屏幕及实物投影出示例2及分数比较

大小的例题(自己设计)便于演示

4大屏幕及

题单闯关活动(大部分资源来源于天网和地网,但不是简单的拿来用,而是把它重新整合设计成闯关的形式。)在场景中激发学生兴趣

五 、学习环境的选择

1、针对本节课的.特点,采用的是模式二,以便师-生、生-生、生-机互动。

2、情境的类型,主要采用的是问题性情境让学生带着问题学习,激发学生的求知欲。

六、教学活动设计

1、学生独立涂纸条的1/2、2/4、3/6(2-3分钟)培养学生的动手能力让学生通过动手发现这三个分数的大小是相等的。

2、小组合作观察讨论1/2、2/4、3/6的分子、分母的变化情况,探索出规律并抽象概括出分数的基本性质(3-5分钟)培养学生的抽象概括能力。

3、小组合作沟通商不变规律于分数的基本性质之间的联系(2-3分钟)让学生感知事物之间是相互联系发展的。

4、闯关活动(8-10分钟)加深学生对分数基本性质的理解,培养学生独立解答问题的能力及竞争意识。

七、教学成果评价

1、形成型评价

作业评价:内容是利用分数的基本性质闯关;形式是师评、自评、生生互评。

学生回答问题:师评、生评。

小组合作讨论:小组内部或小组之间的互评。

2、即时评价:在抽象出分数的基本性质这个环节比较困难,对学习较困难的学生应对加引导和鼓励找到问题之所在,帮助他让他体会到成功的喜悦。

八、教学过程

1、谈话引入

2、复习铺垫,引出猜想

3、新授

师:动手验证猜想

生:用笔涂三张同样大小纸条的- 、- 、-

师:播放动画演示得出- = - = -

问题性情景:- 、- 、-三个分数的分子分母是按照什么规律变化的?

生:观察交流

生:汇报,师板书过程

师:引导学生分段得出规律

生:总结出规律,并对照书上补充。(齐读)

师:板书性质,并强调重点词语,并出示有关判断题。

生:用所学知识解决小华疑问。

师:分数基本性质与前边学过的什么规律相似?

生:商不变规律。

生:利用商不变规律说明分数基本性质。

4、运用

师:利用分数基本性质把一个分数化成分母不同而大小相等的分数。

出示例2、学生填在书上,抽生上台在多媒体上演示并说明理由。

生:比较分数大小。

师:出示书上习题

生:独立思考并解答(集体订正)

5、课堂小结

这节课我们主要研究了什么内容?分数的基本性质是什么?我们利用分数基本性可以做什么?

6、闯关活动

①师:了解闯关进度,对学生闯关活动进行监控。

②闯关完毕,演示第六关的解答过程(生述师演示)。

③情感教育。

九、环节预案

1、学生抽象概括出分数的基本性质这个环节比较抽象如果学生能顺利就可以直接让学生抓关键词加深理解;如果学生不能总结出来师可以加以引导同时附加一些反例让学生感知"同时"、"相同"、"0除外"这些词语的意思,然后再引导学生用一句话表述出来,再做一些判断题让学生加深印象

2、沟通商不变规律与分数的基本性质时,学生如果不能清楚表示出来,则可以引导学生

被除数--分子

÷--分数线

除数--分母

在整数除法中被除数和除数同时扩大或缩小相同的数(0除外)商不变;所以分子、分母同时乘上或除以相同的数(0除外)分数的大小也不变。还可以再请一名学生复述。

3、闯关这个环节如果学生遇到了问题则可以让这些学生说说自己存在的问题,同时可以让学生对他进行帮助,也让其体会到成功的喜悦。

十、板书设计

分数的基本性质

×

×2 ×3 ÷3 ÷2

- = - = - - = - = -

×2 ÷2

×3 ÷3

分数的分子和分母同时乘上或者除以一个相同的数(零除外)分数大小不变,这叫做分数的基本性质。

十一、教学流程图

分数的基本性质教学设计 篇4

教学目标:

知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。

过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。

教学难点:自主探究出分数的'基本性质

教学准备:PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

教学流程:

一、故事导入激趣引思

引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。

讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?

生发表见解。

二、自主合作探索规律

1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!

2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视

4、全班汇报

交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

板书课题:分数的基本性质打出幻灯

5、反思规律看书对照找出关键词要求重读共同读

6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。

三、自学例题运用规律

过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始

生自学

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化

1、判断对错并说明理由

2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数

4、对对碰与1/2,2/3,3/4生生组组师生互动

五、课堂小结课堂作业

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,

作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

分数的基本性质教学设计 篇5

教学目标:

知识与技能:掌握分数的基本性质对于学生来说非常重要。分数的基本性质包括:分数的大小与分子、分母的关系,分数的化简和扩大,分数的比较大小等。通过学习分数的基本性质,可以帮助学生更好地理解和运用分数,提高他们的数学能力。同时,分数的基本性质与整数除法中商不变性质有着密切的关系,这也有助于学生对整数除法的理解和运用。在学习中,学生需要掌握如何将一个分数化简为分母相同而大小不变的分数。这需要学生观察比较分数的大小,抽象概括规律,并进行实际操作。通过这样的练习,可以培养学生的逻辑思维能力和数学解决问题的能力。因此,学生在学习分数的基本性质时,应注重理解概念,掌握方法,多进行练习,提高自己的数学素养。

过程与方法

在探索分数基本性质的过程中,我们体会到了数学思想方法中的“变与不变”以及“转化”的重要性。这个过程激发了我们的求知欲,也让我们体会到了数学思维的乐趣。通过互相交流和合作,我们不仅增进了对分数的理解,还培养了团队合作的意识。这种积极主动的学习态度将成为我们探索更多数学知识的动力,让我们更加享受数学带来的乐趣。

教学重点

理解和掌握分数的基本性质,会运用分数的基本性质。

教学难点

自主探究出分数的基本性质

教学准备:

PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

教学流程:

一、故事导入激趣引思

引言:好的,我来修改一下:大家是否能猜出刚刚老师播放的是哪首经典动画片的主题曲呢?没错,我们今天的学习将从中国古典名著《西游记》的故事开始。

讲故事:唐僧师徒四人行至一村庄,路过一家饼铺,慈悲心化缘得到三块同样大小的饼。唐僧想着如何公平地分配这三块饼,便提出了一个方案:将第一块饼平均分成2份,让猪八戒吃其中的一半;将第二块饼平均分成4份,让沙和尚吃其中的一半;将第三块饼平均分成8份,悟空吃其中的一半。唐僧的提议引起了猪八戒的不满,他认为这样分配偏心,为什么悟空可以吃到一半,而他只能吃到一半。唐僧听了猪八戒的意见后,考虑了一下,觉得确实不太公平。于是,他重新想了一个更公平的.分饼方案,让每个人都能公平地分享这三块饼。

生发表见解。

二、自主合作探索规律

1、三个徒弟平均分得的饼一样多。我们来看一下这组分数等式:1/2=2/4=4/8。观察一下这些分数的分子和分母,它们是相同的吗?虽然分数的分子和分母不同,但它们的值却相等。再换个角度看,我们发现分数的分子和分母发生变化,但它们的比值保持不变。分数真是一种独特的数学形式呢!

2、

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视

4、全班汇报

交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

板书课题:分数的基本性质打出幻灯

5、反思规律看书对照找出关键词要求重读共同读

6、当我们将3除以4得到的结果3/4,与12除以16得到的结果12/16进行比较时,我们发现它们是相等的。这说明了分数的一个基本性质:即分子和分母同时乘以(或除以)同一个非零数时,分数的值不变。这个性质也可以通过整数除法中商不变的性质来解释:在分数中,当分子和分母同时乘以(或除以)同一个非零数时,相当于整数除法中被除数和除数同时乘以(或除以)同一个非零数,商的值也不变。这再次强调了分数的基本性质,帮助我们更好地理解和运用分数的概念。

三、自学例题运用规律

过渡:同学们展现出了强大的学习能力,在接下来的学习中,老师希望你们能够自主学习课本96页的例2,并完成相应的练习。现在开始自主学习吧!祝你们学习顺利!

生自学

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化

1、判断对错并说明理由

2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数

4、对对碰与1/2,2/3,3/4生生组组师生互动

五、课堂小结课堂作业

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

分数的基本性质教学设计 篇6

一、教学目标

1.经历探索分数基本性质的过程,理解分数的基本性质。

2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

二、教学重、难点

教学重点是:分数的基本性质。

教学难点是:对分数的基本性质的理解。

三、教学方法

采用了动手做一做、观察、比较、归纳和直观演示的方法

四、教学过程

(一)、故事引入,揭示课题

1.教师讲故事。

猴山上的猴子们最喜欢吃猴王做的香蕉饼了。有一天,猴王做了三块大小一样的香蕉饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友们,你知道哪只猴子分得多吗?

讨论:三只猴子一起分到了三块大小一样的香蕉,它们都觉得自己分得的最多。经过仔细观察和比较,发现其实每只猴子分得的香蕉数量都是一样的。

引导:聪明的猴王想出了一个聪明的办法来满足小猴子们的要求并且公平分配食物。他决定让每只小猴子依次从一堆食物中取一份,直到食物被取完为止。这样每只小猴子都有机会先后选择食物,确保了公平分配。这个方法既满足了小猴子们的要求,又让他们学会了合理分享。

2.组织讨论。

(1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等的。也就是说,三只猴子分得的饼的分数是14、28和312,它们之间是相等的关系。虽然它们平均分的份数和表示的份数不同,但是它们的大小是相等的。

(2)猴王将三块大小一样的饼分给小猴子一部分后,剩下的部分大小是否相等呢?你还能找出另一组相等的分法吗?通过仔细观察我们可以发现:2/3=4/6=6/9。

(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并简化分数。

3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

分数的分子和分母变化了,分数的大小不变。

它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

(二)、比较归纳,揭示规律

1.出示思考题。

比较每组分数的分子和分母:

(1)从左往右看,是按照什么规律变化的?

(2)从右往左看,又是按照什么规律变化的?

让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

2.集体讨论,归纳性质。

(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。

板书:

(2)34是怎样变化成912的呢?怎么填?学生回答后填空。

(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

(4)学生们对几组分数进行了观察,发现分子和分母的变化规律是同时乘以相同的数。经过归纳总结,他们得出结论:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以

相同的数)

(5)分数的分子和分母之间存在一个共同的因数,当分子和分母同时除以这个因数时,得到的新分数与原分数大小相同。

(板书:都除以)

(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

(板书:零除外)

(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

3.出示例2:把12和1024化成分母是12而大小不变的分数。

思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

(三)、沟通说明,揭示联系

通过举例,分数的基本性质与商不变性质之间有密切的联系。在分数中,分子和分母之间存在着除数与商的关系,分子除以分母就得到分数的值。当我们进行分数的乘除运算时,商不变性质起着重要作用。商不变性质指的是在乘除运算中,如果被乘数或被除数同时乘(除)以(除以)一个相同的数,那么乘积(商)不变。举例来说,如果我们有一个分数$frac{a}{b}$,其中$a$和$b$分别是整数,那么当我们将分子和分母同时乘以相同的数$c$,得到的新分数为$frac{ac}{bc}$。根据商不变性质,这两个分数是等价的,即它们代表同一个数值。这说明分数的基本性质中的分子和分母可以同时乘以一个相同的数,不改变分数的值。因此,分数的基本性质与商不变性质共同构成了分数运算中的重要规律。在进行分数的乘除运算时,我们可以利用商不变性质来简化计算,保证结果的准确性。

如:34=3÷4=(3×3)÷(4×3)=9÷12=912

(四)、多层练习,巩固深化

1.口答。(学生口答后,要求说出是怎样想的?)

2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

教学反思:

学生是学习的主体,教师是引导和组织学习的助手。在数学课堂上,教师的作用是激发学生的学习兴趣,引导他们积极参与到数学学习中来。为了实现这一目标,教师需要深入了解学习方法,建立起一种以探究为核心的学习模式。教师应该激发学生的.学习动力,为他们创造充分的学习机会,帮助他们通过自主观察、讨论、合作、探究来真正理解和掌握数学知识和技能,充分发挥学生的主动性和创造性。一个重要的特点是设计学习方法,从大胆猜想、实验感知、观察讨论到总结归纳,都是为了促进学生自主探究和合作学习而设计的。

1、学生在故事情境中大胆猜想。

通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

2、学生在自主探索中科学验证。

在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

3、让学生在分层练习中巩固深化。

在练习的设计上,我们需要确保题目紧扣重点,设计新颖、多样,难度层次递进。首先,前两题作为基础练习,旨在帮助学生理解概念,全面了解他们对新知识的掌握情况。第三题则是在前两题基础上,巩固练习,加深对所学知识的理解。最后一题通过游戏形式,旨在加深学生对分数基本性质的认识,激发学生学习兴趣,活跃课堂气氛。这样设计不仅能照顾到学生的思维发展过程,同时也能拓宽学生的思维空间,真正做到学以致用。

在教学过程中,我们应该注重引导学生进行多种方法的验证,而不仅仅局限于老师提供的几种方法。数学教学的目的不是仅仅教会学生问题的答案,更重要的是教会他们思考问题的方法和途径。因此,当让学生验证结论的正确性时,应该给予他们更大的自由度,让他们自己去寻找多种途径进行验证。这样不仅可以激发学生的求知欲和探索欲,也有助于培养他们的创新能力和解决问题的能力。