返回首页
智远网 > 短文 > 教案 > 正文

圆的面积教学设计

2025/12/02教案

此篇文章圆的面积教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

圆的面积教学设计 篇1

教学内容:

冀教版六年级上册第四单元

教学目标:

1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。

2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。

3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。

4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。

教学重点:

在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。

教学难点:

能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。

教学流程:

一、炫我两分钟

大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即

同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。

出示口算题目。

随机评价。

相信我们都是有智慧有思想的人,我要为你们点赞(动作)。

二、组内交流,完善梳理

教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。

【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】

三、小组合作交流。

组内交流尝试小研究。

出示小组合作交流建议:

1、组长组织本组成员有序进行交流。

2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。

4、再次确认发言顺序,准备全班交流。

【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】

四、班级交流,提升梳理

1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。

2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。

【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】

3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。

师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。

【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】

五、应用拓展

结合练习做相应题目,巩固易错易混知识。

(一)基础题

1、判断下面各题是否正确,对的打“√”,错的打“×”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )

(2)半径为2厘米的圆的.周长和面积相等。 ( )

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

2、一个圆的周长是25、12米,它的面积是多少?

3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

(二)拓展提高

1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?

2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?

3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?

【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】

六、个人整理

经过本课时的学习,你有哪些收获呢?

【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】

圆的面积教学设计 篇2

教学目标

1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.

2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。

3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。

教学重点

圆面积的'公式推导的过程。

教学难点

理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。

教具、学具准备

有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。

教学过程

一、创设情境,提出问题

【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?

揭示课题:圆的面积

二、充分感知,理解圆的面积的意义。

提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的方式感受一下圆的面积,告诉大家圆的面积指的是什么?

课件显示:圆所占平面的大小叫做圆的面积。

你认为圆面积的大小和什么有关?

三、自主探究,合作交流。

1、引导转化:

回忆学过的一些平面图形的面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?

2、动手尝试探索。

(1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?

(2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?

如果我们再继续等分下去,拼成的图形会怎么样?

小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。

你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?

3、学生合作探究,推导公式

圆的面积教学设计 篇3

一、教材内容分析

新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。

二、学习者特征分析

六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。并且能应用公式解决一些生活实际问题。

三、教学目标(知识,技能,情感态度、价值观)

1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。

3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。

四、教学策略选择与设计

1、注重情境创设,有意识地激发学生学习知识的兴趣

数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的`面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

2、 注重实践操作,有意识地培养学生获取知识的能力

学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

3、 注重学法指导,有意识地引导学生应用转化的方法

本节课中,在求圆面积公式时,不是教师灌输式地教会学生S =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

4、 注重媒体应用,有意识地突破学生学习知识的难点

利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。

五、教学环境及资源准备

用多媒体课件,圆形卡片辅助教学

六、教学过程

1、什么是圆的面积?

(1)涂出一个圆的面积

(2)用自己的话说什么是圆的面积?

2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?

3、能不能用剪、拼的方法把圆转换成我们学过的图形?

4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?

5、学生汇报后,课件演示。

6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、

7、转化后的长方形的长和宽与原来的圆有什么关系?

小组合作学习,讨论以下两个问题:

1) 转化后长方形的长相当于什么?宽相当于什么?

2) 你能从计算长方形的面积推导出计算圆面积的公式吗?

8、汇报讨论结果。

9、运用新知识,解决问题。

1)r=5cm,求圆的面积

2)课始主体图中的问题

总结

小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。

总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。

圆的面积教学设计 篇4

教学目标:

1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

教学重难点:

圆面积公式的推导。

教学关键:

弄清圆与转化后的近似图形之间的关系。

教具:

多媒体计算机。

学具:

每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

教学过程:

一、复习旧知、设疑导入

同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

二、动手操作、探索新知

1、通过度量,猜想圆面积的大小。

用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

初步猜想:圆的面积相当于r2的3倍多一些。

3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。

2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

3、学生小组合作。

(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

⑤你能推导出圆面积计算公式吗?

(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的'底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

三、看书质疑、自学例3,注意书写格式和运算顺序

四、运用新知,解决问题

1、一个圆的半径是5厘米,它的面积是多少平方厘米?

2、看图计算圆的面积。

3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?

4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

(1)可测圆的半径,根据S=πr2求出面积。

(2)可测圆的直径,根据S=π(d/2)2求出面积。

(3)可测圆的周长,根据S=π·(c/2π)2求出面积。

五、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

六、布置作业

七、板书设计

圆的面积

长方形的面积=长×宽圆的面积=周长的一半×半径

S=πr×r;S=πr2

圆的面积教学设计 篇5

设计说明

本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的。在教学设计上有以下特点:

1.注重联系生活实际,开展探究性的数学活动。

学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。

2.在教学中渗透数学思想,完成新知构建。

在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。

课前准备

教师准备PPT课件圆的面积演示教具大小不同的两张圆形纸片

学生准备剪刀小正方形透明塑料片圆形学具

教学过程

⊙复习铺垫,导入新课

1.回忆圆的周长的计算方法。

(1)已知直径怎样求圆的周长?

(2)已知半径怎样求半圆的周长?

2.建立圆的面积的概念。

(1)感知圆的面积的大小。

师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?

师明确:圆的面积有大有小。

师:谁能说一说什么叫做圆的面积呢?

师指出:圆所占平面的大小叫做圆的面积。

(2)区别圆的面积和周长。

指导学生拿出准备好的圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?

学生操作后,师生共同明确:圆的周长是指围成圆一周的封闭曲线的长;圆的面积是指圆所占平面的大小。

设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。

⊙动手操作,探究新知

1.通过度量,猜想圆的面积的大小。

用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的`面积相当于半径平方的3倍多一些。

师:由此看出,要求圆的精确面积是无法通过度量得出的。

2.回忆多边形面积公式的推导过程。

想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?

(课件演示平行四边形的面积推导过程)

过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?

3.动手操作。

(1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。

课件演示剪拼的过程:

(2)讨论:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③把圆平均分成16份和32份后,拼成的图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)

④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?

(课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)

(3)观察、汇报拼成的长方形与圆的关系。

①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)

圆的半径=长方形的宽

圆的周长的一半=长方形的长

②拼成的长方形的面积与圆的面积有什么关系?

(引导学生理解:形状不同,面积相等)

(4)推导圆的面积计算公式。(引导学生结合图形理解)

因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r。

因为C=2πr,所以S圆=πr×r,S圆=πr2。

圆的面积教学设计 篇6

教学内容浙教版小学数学第十一册教材P141—143、例1

教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的面积公式推导出圆面积计算公式。

学情分析在之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。

教学目标

1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2.能够利用圆面积公式进行计算。

3.培养学生动手操作、观察分析、概括推理的能力。

教学重点圆面积计算公式的推导和利用公式进行正确计算。

教学难点极限思想的渗透与圆面积公式的推导过程。

教学准备多媒体课件、 圆的`平面图形1个、剪刀、直尺等

教学过程

一、创设情境

1.播放录像:美丽的校园景色、各种形状的花坛。

问:你能计算出它们的占地面积吗?

2.媒体演示(从各种形状的花坛中提炼出下面的图形)。

(1)学生说出这些图形的面积计算公式。

(2)用什么方法推导出三角形面积计算公式的?

教师板书:

剪拼

要学的图形 已学的图形

转化

3.媒体出示圆形。

今天要学习圆的另一个知识,就是圆占平面的大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)

(板书课题:圆的面积)

二、公式推导

1.提出问题,制定方案

(1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?

(2)小组汇报:

a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。

b.面临的困难:如何曲线变直线。

2.操作实验,分析问题

(1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。

(2)交流汇报。

①学生汇报剪拼过程,同时教师贴示。

②观察思考(教师有意选取一组剪拼成长方形的来交流)

a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?

b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?

(教师媒体演示)

c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?

d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?

3.推导公式,解决问题

(1)观察讨论

当圆转化成近似长方形时,你们发现它们之间有什么联系?

(2)学生填实验报告。

(3)学生交流汇报推导过程。

(4)观看课件演示过程,并请同桌两位同学互说一次。

三、公式应用

1.简介千古绝技:中国古代数学家的割圆术。

公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……

2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。

3.根据下面所给的条件,求圆的面积。

(1)直径10厘米(2)周长12。56

(生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)

四、课堂总结

1.这节课你学会了什么?

2.这节课你有什么感受?

五、课外拓展

1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?

2.已知正方形的面积是25平方厘米,求圆的面积。如图:

3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)

板书设计

圆的面积

圆所占平面的大小叫圆的面积。

长方形的面积 = 长 × 宽

圆的面积 = πr × r = πr2

(周长的一半)

剪拼

要学的图形 已学的图形

转化