返回首页
智远网 > 短文 > 教案 > 正文

函数教学设计

2025/12/25教案

此篇文章函数教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

函数教学设计 篇1

教学目标

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

教学重点和难点

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

教学过程设计

(一)复习

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

5.请在坐标平面内画出A点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

(二)新课

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

课堂教学设计说明

1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的`点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。

3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。

4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。

5.作业中的第1-3题,对训练函数图象很有帮助。

第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。

第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。

第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。

函数教学设计 篇2

用函数模型解决实际问题这部分内容,非常注重贴近实际生活,关注社会热点,要求学生对一些实际例子做出判断、决策,注重培养学生分析问题、解决问题的能力。解决函数建模问题,也就是根据实际问题建立起数学模型来。所谓的数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表达的一种数学结构。函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行。本节内容是安排在学生刚学完函数的相关知识,为学生建立起函数模型奠定基础。

学生虽然对这种函数建模问题并不陌生,但是要建立起正确的函数模型却不是一件容易的事。这种题型题目较长,相关的内容较多,问题不是一眼就可以看出答案,需要建立的函数模型也多种多样,不少还会涉及到求二次函数的最值问题,学生往往是无从下手,对自己失去信心。针对这种情况,我觉得直接让学生一步到位就找出解决问题的途径是很困难,老师在这里就应该发挥自己的主导地位,带领学生由问题入手,逐步分析,自己设计出一个一个的小问题,最后把这些小问题串起来,把题目中的大问题解决。

用函数模型解决实际问题需要建立的函数模型是多种多样的,只有根据题目的要求建立起适当的函数模型,才能成功地解决问题。教师在授课过程中,要注重分类的思想,帮助学生把函数建模问题分成几类,以方便学生形成自己的知识系统。

一.一次函数模型的应用

某同学为了援助失学儿童,每月将自己的零用钱一相等的数额存入储蓄盒内,准备凑够200元时一并寄出,储蓄盒里原有60元,两个月后盒内有90元。

(1)盒内的钱数(元)与存钱月份数的函数解析式,并画出图象。

(2)几个月后这位同学可以第一次汇款?

这种题型只要建立起一次函数就可以很快地解决问题,而且学生以前也有接触过,对他们而言这种问题难度不大,主要是让他们对函数建模有个感觉。

二.二次函数模型的应用

建立二次函数模型解决实际问题是整本书中出现得最多的一种方法,这种多用于根据二次函数的性质求出最值,求利润问题也多属于这种类型。

某商店进了一批服装,每件售价为90元,每天售出30件,在一定范围内这批服装的售价每降低1元,每天就多售出1件。请写出利润(元)与售价(元)之间的函数关系,当售价为多少元时,每天的利润最大?

学生首次接触这种类型的题,往往是束手无策,这时教师可引导他们从他们最熟悉的`问题做起:利润=单件售价×售出件数,设售价为x,则下面只需要找出售出件数即可,而售出件数又与价钱降低的幅度有关,所以设计下列相关问题让学生去找答案:

售价比原定的售价降低了:90-x

售出件数比原来多了:(90-x)×1=90-x

则现在售出件数为:30+(90-x)=120-x

因此,利润=x(120-x)

只要学生根据这些小问题,一个一个向题目索取答案,那么这道题就可以迎刃而解。

三.分段函数模型的应用

我们国家的税收,邮资的收取,出租车的收费都是按段收费的,可以根据这些现实中的例子让学生写出它们对应的函数,这样学生会更感兴趣,而且也更能感受到数学在实际生活中的广泛应用。

四.指数函数模型的应用

这种函数的应用多用于人口的增长问题,银行用复利计算利息的问题。

按复利计算利息的一种储蓄,设本金为a元,每期利率为r,本利和为,存期为x,写出本利和随存期x变化的函数式。如果存入本金1000元,每期利率2.25%,计算5期后的本利和是多少?(不计利息税)

这种涉及到建立指数函数模型的问题,学生理解起来相对困难,可以帮助学生从第一期、第二期……求起:

1期后的本利和为 a+a×r=a(1+r)

2期后的本利和为 a(1+r)+a(1+r)r=a(1+r)2

3期后的本利和为 a(1+r)2+a(1+r)2×r=a(1+r)3

……

x期后的本利和为 =a(1+r)x

这样分步骤,学生就很容易理解最终的本利和的函数式是怎么得到的。

根据实际例子建立起适当的函数模型是教学当中的一大难点,只有帮助学生进行分类归纳,并且在授课过程中时刻体现由问题入手,由简单到复杂,学生才能对所学知识更好地掌握,才能在数学学习中体会到其中的乐趣,把数学更好地应用到实际生活中去。

函数教学设计 篇3

第一课时

教学设计思想

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

教学目标

知识与技能

1.能灵活列反比例函数表达式解决一些实际问题。

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重难点

重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教学方法

启发引导、合作探究

教学媒体

课件

教学过程设计

(一)创设问题情境,引入新课

[师]有关反比例函数的表达式,图像的'特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

函数教学设计 篇4

一.教学目标

1.知识与技能

(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法

(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

3.情感、态度、价值观

(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二.教学重点与难点

教学重点:探求π-a的诱导公式。π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。

教学难点:π+a,-a与角a终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。

三.教学方法与教学手段

问题教学法、合作学习法,结合多媒体课件

四.教学过程

角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题。

(一)问题提出

如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题。

【问题1】求390°角的正弦、余弦值. 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系。即有:sin(a+k·360°) = sinα,

cos(a+k·360°) = cosα, (k∈Z) tan(a+k·360°) = tanα。

这组公式用弧度制可以表示成sin(a+2kπ) = sinα, cos(a+2kπ) = cosα, (k∈Z) (公式一) tan(a+2kπ) = tanα。

(二)尝试推导

如何利用对称推导出角π-a与角a的三角函数之间的关系。

由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的三角函数值相等,它们的`终边一定相同吗?比如说:

【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?

角π-a与角a的终边关于y轴对称,有 sin(π-a) = sina,

cos(π-a) =-cosa,(公式二) tan(π-a) =-tana。

〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的? 因为与角a终边关于y轴对称是角π-a,,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。于是,我们就得到了角π-a与角a的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

(三)自主探究

如何利用对称推导出π+a,-a与a的三角函数值之间的关系。

刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?

【问题3】两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?

角-a与角a的终边关于x轴对称,有: sin(-a) =-sina, cos(-a) = cosa,(公式三) tan(-a) =-tana。

角π+a与角a终边关于原点O对称,有: sin(π +a) =-sina,

cos(π +a) =-cosa,(公式四) tan(π +a) = tana。

上面的公式一~四都称为三角函数的诱导公式。

(四)简单应用

例求下列各三角函数值:

(1) sinp;

(2) cos(-60°);

(3)tan(-855°)

(五)回顾反思

【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?

知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。主要体现了化归和数形结合的数学思想。具体可以表示如下:

(六)分层作业

1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;

2、必做题 课本23页13 3、选做题

(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?

(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?

函数教学设计 篇5

教学目标

1、使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性。

2、通过函数单调性概念的教学,培养学生分析问题、认识问题的能力。通过例题培养学生利用定义进行推理的逻辑思维能力。

3、通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育。

教学重点与难点

教学重点:函数单调性的概念。

教学难点:函数单调性的判定。

教学过程设计

一、引入新课

师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?

(用投影幻灯给出两组函数的图象。)

第一组:

第二组:

生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小。

师:(手执投影棒使之沿曲线移动)对。他(她)答得很好,这正是两组函数的主要区别。当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小。虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质。我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质。而这些研究结论是直观地由图象得到的。在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容。

(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意。)

二、对概念的分析

(板书课题:)

师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍。

(学生朗读。)

师:好,请坐。通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

生:我认为是一致的。定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少。

师:说得非常正确。定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质。这就是数学的魅力!

(通过教师的情绪感染学生,激发学生学习数学的兴趣。)

师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力。

(指图说明。)

师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间。

(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解。渗透数形结合分析问题的数学思想方法。)

师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师。)

生:较大的函数值的函数。

师:那么减函数呢?

生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数。

(学生可能回答得不完整,教师应指导他说完整。)

师:好。我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

(学生思索。)

学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环。因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力。

(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气。在学生感到无从下手时,给以适当的提示。)

生:我认为在定义中,有一个词“给定区间”是定义中的关键词语。

师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同。增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性。请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

生:不能。因为此时函数值是一个数。

师:对。函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化。那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

生:不能。比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数。因而我们不能说y=x2是增函数或是减函数。

(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知。)

师:好。他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”。这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数。因此,今后我们在谈论函数的增减性时必须指明相应的区间。

师:还有没有其他的关键词语?

生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语。

师:你答的很对。能解释一下为什么吗?

(学生不一定能答全,教师应给予必要的提示。)

师:“属于”是什么意思?

生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取。

师:如果是闭区间的话,能否取自区间端点?

生:可以。

师:那么“任意”和“都有”又如何理解?

生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2)。

师:能不能构造一个反例来说明“任意”呢?

(让学生思考片刻。)

生:可以构造一个反例。考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了。

师:那么如何来说明“都有”呢?

生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数。

师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的.增减性。

(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解。在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力。)

师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小。即一般成立则特殊成立,反之,特殊成立,一般不一定成立。这恰是辩证法中一般和特殊的关系。

(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力。)

三、概念的应用

证明函数f(x)=3x+2在(-∞,+∞)上是增函数。

师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径。

(指出用定义证明的必要性。)

师:怎样用定义证明呢?请同学们思考)(后在笔记本上写出证明过程。

(教师巡视,并指定一名中等水平的学生在黑板上板演。学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发。)

师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立。因此我们可由差的符号来决定两个数的大小关系。

生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,所以f(x)是增函数。

师:他的证明思路是清楚的。一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”)。但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号。应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2)。”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”)。最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”)。

这就是我们用定义证明函数增减性的四个步骤,请同学们记住。需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小。

(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势。在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的。)

调函数吗?并用定义证明你的结论。

师:你的结论是什么呢?

上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数。

生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义。比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数。

生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数。

域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数。因此在函数的几个单调增(减)区间之间不要用符号“∪”连接。另外,x=0不是定义域中的元素,此时不要写成闭区间。

上是减函数。

(教师巡视。对学生证明中出现的问题给予点拔。可依据学生的问题,给出下面的提示:

(1)分式问题化简方法一般是通分。

(2)要说明三个代数式的符号:k,x1·x2,x2-x1。

要注意在不等式两边同乘以一个负数的时候,不等号方向要改变。

对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视。)

四、课堂小结

师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

(请一个思路清晰,善于表达的学生口述,教师可从中给予提示。)

生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤。

课堂教学设计说明

是函数的一个重要性质,是研究函数时经常要注意的一个性质。并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用。对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质。学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味。因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理。

另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点。因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用。

还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫。

函数教学设计 篇6

函数教学设计大全(15篇)

作为一位杰出的教职工,往往需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的函数教学设计,仅供参考,希望能够帮助到大家。