植树问题教学设计
此篇文章植树问题教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
植树问题教学设计 篇1
教学目标:
1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2.使学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
一、谈话引入,明确课题
母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)
大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、引导探究,发现“两端要种”的规律
1.创设情境,提出问题。
①课件出示图片。
介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a.指名读题,从题中你了解到了哪些信息?
b.理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵)200 +2=202(棵)
方法三:1000÷5=200(棵)200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2.简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?
②画一画,简单验证,发现规律。
a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)
b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)
c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书:2段3棵;7段8棵;10段11棵。)
d.你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。
a.课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000÷5=200这里的200指什么?
200 +1=201为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b.解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
三、合作探究,“两端不种”的规律
1.猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的.方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2.独立探究,合作交流。
3.展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4.做一做。
①在一条长20xx米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?
课件闪烁:将“一侧”改为“两侧”
问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
四、回归生活,实际应用
1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2.我们身边类似的数学问题。
①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?
五、全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。
“植树问题”说课
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2.学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
本课教学分四大环节:
一、谈话导入,明确课题
二、引导探究,发现“两端要种”的规律
1.创设情境,提出问题。
通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)
2.简单验证,发现规律。
在举简单例子画一画这个环节,安排了两个小层次:
①按老师要求画。
②学生任意画。
通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。
3.应用规律,解决问题。
①应用规律,验证前面例题哪个答案是正确的。
②应用规律,解决插多少面小旗的问题。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
三、合作探究“两端不种”的规律
1.猜测“两端不种”的规律。
猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。
2.独立操作,探究规律。
有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。
四、回归生活,实际应用
设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
植树问题教学设计 篇2
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。
教学目标:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
教学重难点:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。
教学、具准备:
课件、表格、尺子等。
教学过程:
一、教学“间隔”
1.教学“间隔”的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)
2.引入植树问题的学习。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
二、自主探究 找出规律
1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?
预设:学生可能大多数对得到20棵。
师:你们的猜测正确吗?下面我们就一起想办法来验证一下。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?
师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?
全班交流汇报。(重点让用线段图来验证的小组来说明理由。)
师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?
生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)20÷5不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?
师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。
根据学生的回答,师填写表格:
总
长(米)
每两棵树之
间的距离
(每段长)
棵
数
间隔数
(段 数)
20
全班观察表格寻找规律。
师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)
师:对得到的这个规律有没有不同意见?
三、巩固练习
师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?
(1)基础练习。
师:请看题目,谁愿意来说一说?
A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
A2. 如果是每隔10米栽一棵呢?(口答)
B.师:同学们真能干!其实在我们的`生活周围存在许多类似的植树问题。这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?
课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?
C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。
课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?
(2)拓展练习。
师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?
课件出示解放碑的大钟及题目。
解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?
师:请同学们独立的在练习本上完成。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。
四、数学文化
介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?
五、全课总结
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
植树问题教学设计 篇3
一、教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。
二、教材目标:
1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。
2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。
3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。
三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。
四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。
五、教学准备:学习单、多媒体课件、小树和小路模型。
六、 教学过程:
(一) 问题导入:
出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?
教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”
(二)探究新知:
1.队列问题:
出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”
并出示课题。
2.植树问题:
(1)体会“化繁为简”思想:
问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?
突出矛盾:数字太大,不易思考,引导学生转换较小的数。
明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)
(2)设计三种植树方案:
引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。
①学生活动,教师巡视。
②汇报、展示:
③小结:组织学生对不同方案进行命名,突出其主要特征。
教师板书:两端都种、只种一端、两端不种
(3)探究规律:
①求间隔数:
教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。
在没有植树的棵数时,探究间隔数与全长、间隔的关系。
组织学生独立思考,借助学具、线段图等形式探究规律
a:学生思考并摆学具或画线段或列算式。
b:汇报:
②探究间隔数与棵数的关系:
开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?
小组合作完成探究,活动要求:
1)自己选择适合的间隔长度,四人小组合作完成记录表。
2)小组选择一种植树方式进行探究。
3)可以借助摆学具、画线段、数手指或列算式的方式。
a:学生小组活动,教师巡视。
b:学生汇报发现规律,教师板书。
c:升华:
三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。
d:应用:
老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?
(三)巩固提升:
1.选一选:
下面每一题相当植树问题的'哪一种情况?
(1)音乐中的“五线谱”( )
(2)衣服上的纽扣( )
(3)成语“一刀两断”()
(4)自鸣钟九点报时的钟声( )
A.两端都种 ; B.只种一端; C.两端不种。
2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:
(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )
(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )
4.学校一条大路的一边共插了20面彩旗。
(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?
(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?
(四)课堂总结:
师:今天我们学习了什么?你有什么收获?
生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。
教学反思:
通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。
植树问题教学设计 篇4
【教学目标】
1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。
3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
【教学重难点】
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律。并能运用规律解决实际的问题。
【教学准备】课件,纸条。
【教学过程】
一、谈话引入,明确课题
在我国的北方经常出现沙尘暴天气,它给我们的生活带来了很大的危害,今天老师也给大家带来了几张有关沙尘天气的图片新闻。(课件出示沙尘暴的图片)同学们知道吗?实际呀沙尘天气是大自然对人类的惩罚,正因为以前人们的乱砍乱伐,破坏了大自然的生态环境,才会出现今天的沙尘天气。最近呀咱们这个城市也经常出现雾霾天气,雾霾比沙尘暴天气危害更大,那雾霾给我们的生活带来了什么不便呀?那你们知道治理沙尘和雾霾天气最好的办法是什么?(植树造林)。那么今天这节课我们就来研究植树中的数学问题。(板书课题)
二、探索交流,解决问题
(一)设计植树方案
为了改善我们的校园环境,让大家呼吸到更新鲜的空气,学校准备在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案。(你能设计出几种方案)
你们认为应该怎么种树?只让学生口答方案,追问有哪三种方案?(两端种树、一端种树、两端不种)。
(二)、两端都种
出示方案一:学校在一条长20米的`小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)学生齐读题,理解题意:强调“一边”和“两端”,理解每隔5米栽一棵的意思。
(2)理解示意图展示。
那我们就一起来试着种一下吧!用一条线段来表示20米长的小路的一边,我们应该怎么种呢?开头为什么要种?(因为是两端植树)也就是说路的开头先要种一棵,那下棵怎么种呢?要和头一棵树隔5米,也说是隔5米种一棵,一直种到小路的末端。
(3)理解株距。
看示例图,大家发现没有每两棵树之间的距离相等吗?都是多少?(5米)这里的5米就表示株距,株距指的就是每两棵树间的距离。实际上株距表示的就是一个间隔的长度。
(4)发现规律
谁能说说棵数和间隔数之间是什么关系?
板书:两端都栽:棵数=间隔数+1
间隔数棵数-1
(5)教学画线段图
这个公式短时间记住没问题,但时间长了,三个月、半年、一年忘了怎么办?可以借助画线图,带着学生在黑板上画线段图。
(6)引导学生列式:
20÷5=4(个)(这里的4指什么?)
4+1=5(棵)(这个算式求的是什么?为什么要加1?)
答:一共需要5棵树苗
(三)、两端都不种
出示方案二:学校在一条长20米的小路一边植树,每隔5米栽一棵(两端都不栽)。一共需要多少棵树苗?
(1)指生读题后,说说这道题和上一题的不同点。
(2)两端都不栽什么意思?指生比划一下,出示示例图让学生判断画的对吗?
(3)发现规律并板书。
(4)同桌之间互相列算式。
(5)指生交流并点评。
(四)、一端种树
出示方案三:学校在一条长20米的小路一边植树,每隔5米栽一棵(只栽一端)。一共需要多少棵树苗?
(1)生齐读题后,说说这道题和上一题的不同点。
(2)只栽一端什么意思?
(3)指生交流,发现规律并板书。
小结:通过这三种植树情况,大家发现没有要想算出棵数,必须知道什么?(只要知道间隔数,就可以算出棵数。)引导学生说出:间隔数=总长÷株距。
你们真是学校的智多星,不仅帮学校解决了难题,还探究出了植树的规律,真是太棒了!你们幸福吗?拍拍手吧!
(五)强化规律
课件出示种树的三种情况,学生抢答,记忆种树的规律。
其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)数学上我们把这些现象统称为植树树问题,我们一起来看一下生活中的植树现象。(课件展示图片。)
三、回归生活,实际应用。
我们都知道数学离不开生活,要解决生活中的植树问题,我们首先要确定它是三种情况中的哪一种。老师收集了一些生活实例,同学们能不能运用我们刚探究的这些规律来解决这些问题呢?对自己有没有信心?那就让我们一起走进数学,走进生活吧!(课件逐一出示练习)
1、为迎接六一儿童节,学校准备在教学楼前60米的道路一旁摆放鲜花(靠墙一端不放),相邻两盆花之间的距离3米。一共需要几盆花? 属于( )
①两端摆 ②一端摆 ③两端不摆
答:一共需要( )盆花。
2、小学生广播操队列中,其中一列纵队26米,相邻两个学生之间的距离是2米。这列纵队一共有几个学生?
属于( )
①两端都站 ②一端站 ③两端不站
答:这列纵队共有( )个学生。
3、一根木头长8米,每2米锯一段。一共要锯几次?属于( )植树现象?
①两端种 ②一端种 ③两端不种
答:一共要锯( )次。
4、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
(1)先判断属于哪种情况,独立解决。
(2)小组交流。
(3)汇报。
四、回顾整理,反思提升。
学习永远是件快乐而有趣的事情,这节课老师感到很快乐,我收获了幸福,你们收获了什么?
【板书设计】 植树问题
两端都栽: 两端都不栽: 只栽一端:
棵数=间隔数﹢1 棵数=间隔数-1 棵数=间隔数
间隔数=棵数-1 间隔数=棵数+1
植树问题教学设计 篇5
植树问题教学设计(集合15篇)
作为一位杰出的教职工,时常需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么问题来了,教学设计应该怎么写?以下是小编整理的植树问题教学设计,欢迎阅读,希望大家能够喜欢。
植树问题教学设计 篇6
教学目标:
(1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。
(2)体验复杂问题简单化的快乐。
教学重点:应用植树问题的模型解决相关的实际问题。
教学难点:理解棵树与间隔数之间的关系。
教学准备:课件
教学过程:(如下文)。
一、课前谈话
1.手指游戏
师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)
师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)
师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?
师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)
[设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]
2.导入课题
师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)
二、动手种树,初步感知
1.创设情境,提出问题
(1)课件出示例1
同学们在全长100米的小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?
(2)理解题意
①指名读题,从中你了解哪些信息?
②理解“两端”是什么意思?
(3)讨论交流
师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。
全班讨论、交流,汇报后得出结论,这种说法不对。就应是:
100÷5=20(段)20+1=21(棵)(板书)
2.简单验证,发现规律
师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。
课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)
问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)
20+1=21(棵)20段为什么不是20棵,而是21棵呢?
我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1
透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)
师:你们真了不起,发现了植树问题中十分重要的规律,那就是:
间隔数(段数)=全长÷段长
植树的棵数=间隔数+1
全长=段长×段数
[设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]
三、利用规律,解决问题
师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。
①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?
②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?
③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?
师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
[设计意图:乐中求学。把生活中类似植树问题的'各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]
四、再次探究,构建模型
1.创设情境,激趣导入
师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。
2.设计方案,动手操作
师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!
(生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)
3.反馈交流
师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)
师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。
生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。
生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)
生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……
4.师小结
同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。
五、精彩回放,画龙点睛
1.用手势表达植树问题的模型并考察同桌的掌握状况。
2.透过这节课的学习,你们有什么收获?
六、穿越时空,展望未来
有20棵树,若每行4棵,问怎样种植,才能使行数更多?
七、板书设计
植树问题:
两端都种:棵数=间隔数+1
100÷5=20(个)……(间隔数)
20+1=21(棵)……(棵数)
10-1=9(个)……(间隔数)
9+1=10(棵)……(棵数)
返回首页