返回首页
智远网 > 短文 > 教案 > 正文

圆的周长教学设计

2026/01/11教案

此篇文章圆的周长教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

圆的周长教学设计 篇1

一、教学内容:圆的周长计算方法与应用

二、教学目的:

1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.

2.培养学生的观察、比较、分析、综合及动手操作能力.

3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.

4.结合圆周率的学习,对学生进行爱国主义教育.

三、教学重点:

1.理解圆周率的意义.

2.推导出圆的周长的计算公式并能够正确计算.

四、教学难点:理解圆周率的意义.

五、教学过程:

一、 创设情境,引入新课

1、用多媒体出示:龟兔赛跑路线图。

第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

b.什么是圆的周长?请你摸一摸你手中圆的周长.

3、师:今天我们就来研究圆的周长。并出示课题

二、引导探究,学习新知

(一)推导圆的周长公式

1.学生讨论

(1)正方形的周长跟谁有关系?有什么关系?

(2)你认为圆的周长和谁有关系?

2.猜测

看图后讨论:圆的周长大约是直径的几倍?为什么?

小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?

3.动手操作

(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。

师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

师:看哪一组配合好,速度快,较精确。开始!

(2)整理并填写表格。单位:厘米

测量对象

圆的周长

圆的直径

周长与直径的比值

(3)汇报小结。

师:用实物投影展示整理的表格。

师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?

(三)认识圆周率、介绍祖冲之

1.我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示.

π≈3.14

2.介绍祖冲之

(四)归纳圆的周长公式

1.怎样求周的长?若我们用字母c代表圆的周长,d表示圆的'直径,那圆的周长公式用字母怎样表示?

师板书:c=πd

2.圆的周长还可以怎样求?由于d=2r 则:c=2πr

师板书:c=2πr

师问:圆的周长分别是直径与半径的几倍?

三、巩固应用,强化新知

(1)求下面各圆的周长.

1.d=2米 2.d=1.5厘米

(2)求下面各圆的周长.

1.r=6分米 2.r=1.5厘米

(二)判断题

1.π=3.14 ( )

2.计算圆的周长必须知道圆的直径. ( )

3.只要知道圆的半径或直径,就可以求圆的周长. ( )

(三)选择题

1.较大的圆的圆周率( )较小的圆的圆周率.

a 大于 b 小于 c 等于

2.半圆的周长( )圆周长.

a 大于 b 小于 c 等于

(四)课堂反馈

你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

(五)实践操作

请同学们,画一个周长是12.56厘米的圆,

先以小组为单位讨论:画多大?如何画?再操作。

四、课堂总结,梳理知识

师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

圆的周长教学设计 篇2

【教学目标】

1、让学生明白什么是圆的周长。

2、理解并掌握圆周率的好处和近似值。

3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。

5、透过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

6、培养学生的观察、比较、分析、综合及动手操作潜力。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、教师准备图片。

【教学过程】

一、激情导入

1、动物王国正在举行动物运动会可热闹了,想不想去看一看?

2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

二、探究新知

(一)复习正方形的周长,猜想圆的周长可能和什么有关系。

1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的`周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)

4、猜想:你觉得圆的周长可能和什么有关系?

(二)测量验证

1、教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。

②观察数据,比较发现。

提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

3、比较数据,揭示关系

正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

(三)介绍圆周率

1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

(四)推导公式

1、到此刻,你会计算圆的周长吗?怎样算?

2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

3、明白半径,能求圆的周长吗?周长是它半径的多少倍?

三、运用公式解决问题

1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

3、钟面直径40厘米,钟面的周长是多少厘米?

4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

四、课堂小结

透过这节课的学习你想和大家说点什么?

这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。

圆的周长教学设计 篇3

圆的周长教学设计[优选]

作为一位杰出的老师,时常需要准备好教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么大家知道规范的教学设计是怎么写的吗?以下是小编整理的圆的周长教学设计,仅供参考,欢迎大家阅读。

圆的周长教学设计 篇4

一,指导思想和理论依据:

新课程标准:有效的数学学习活动不能简单依靠模仿和记忆,亲身实践,独立探索和合作是学生学习数学的重要途径。数学学习活动应该是一个活泼,积极和丰富的人格过程。

根据这个概念,在本课设计中,我强调两点,一是让学生主动体验猜测动手操作,练习和演示过程的数学结论;第二是让学生,也是学生的自主空间,自我探索,合作和交流的学习方法在整个教室。

二,教材与学习分析:

教科书是在掌握了矩形和正方形圆周的学生的基础上学习的,以及对圆的初步理解。它是学生初步学习曲线图形的基本方法的开始,是学习圆形区域和未来学习圆柱形,锥形等知识的基础。学习分析:虽然学生有计算线图长度的基础,但第一次接触曲线图形,更抽象的概念不容易理解,推导出圆周的计算方法,理解pi的意义有一些困难。

三,教学目标,关键和难点:

1,知识和技能:

学习学生理解圆的周长,掌握圆的圆周的计算,理解pi的含义,并正确应用公式来解决简单的实际问题。

2,工艺和方法:

(1)通过组织学生观察和实验活动,指导学生体验猜测归纳,一般学习过程,理解pi。

(2)体验圆周圆周的发现,探索过程,培养学生分析,抽象,概括和发现法律的能力。

3,情绪和态度:

(1)通过学生的动手操作,找到,激发学习兴趣,让学生体验到探索问题的乐趣;

(2)结合引进pi,使学生受爱国科学精神的教育。

(3)在解决问题的过程中,增强意识的应用。

教学重点:

学生使用实验的手段,通过测量,计算,猜测圆的周长和直径之间的关系,验证过程的理解和掌握圆的计算方法。

理解pi。

教学准备:

⒈圆形对象实物,课件。

⒉每个学生准备三种不同尺寸的光盘,一条线,一条尺。

四,教学方法:

1,独立探索法。通过实践学生的实践,找到长途的测量学生,培养学生动手操作的能力,激活学生思维。

2,合作交流法。合作沟通是学生学习数学的主要方式。通过学生的团结合作,自我探索,讨论交流,培养学生团结合作精神,激发学生对学习兴趣。

五,主要教学环节和设计:

通过以下链接教授本课:

一,创造形势,初步认识

二,合作交流,探索新知识

三,实际应用,解决问题四,谈论收获,课外推广

六,教学过程:

第一个链接:创建情境,初步感觉的分裂:

哪些学生会骑自行车?当骑车时,车轮向前滚动一周,他们旅行多长时间?如何计算?(课件用于显示滚动向前滚动视频的滚轮。)要求圆形周长的距离有多长。

老师:了解如何计算今天的圆周长。

这部分的设计目的:从熟悉自行车的学生开始,让学生感觉到车轮滚动周是圆周的圆周,刺激学生学习新的兴趣。

第二环节:合作交流,探究新知识

(A)通过以下活动直观地感知圆的周长,帮助学生了解圆的周长。

1,请指出老师在圆形物体的手中。准备一些硬币,杯子,让学生在圆圈上滑动触摸等方式来理解和了解圆周的圆周。

2,分析矩形,正方形和圆周的圆是否不同?

3,指的是手指,他们自己手在圆片的圆周上的描述。

设计意图:让学生双手触摸,圆周的初始感知是一周的周长。而且还增强了知觉知识的周边,并使图像理解周围的意义。

(B)探讨计算方法的周长

圆周计算公式中扣除这个内容,我安排了三个链接:

1,揭示矛盾,导致探索新知识的愿望。要求学生考虑我们的手,有什么办法来衡量他们的周长吗?

预设几种情况:

(1)滚动用绳子包起圆圈并拉直;

(2)折叠圆纸几次,然后测量计算;

总结:以上几方法律是改变歌曲是直的。

课件展示地球图片。

如果你想计算地球赤道周的长度,用绕组法,滚动法显然不能测量怎么办?我们需要探索圆周的一般方法。

设计意图:这个过程允许学生理解绕组,滚动方式有限,触发其计算公式的探索计算的热情和必要性,以便进一步研究问题床面的计算周长。这种矛盾,更多的是刺激学生的好奇心。 2,实验操作,探究圆周的计算方法在本文的内容中,为了探究pi,理解pi是本课的难点,所以我设计学生进行子组合作,通过猜测总结结论要做。

(1)猜想,目的是让学生了解圆周和直径之间的关系,着重解决圆周和什么相关问题。

老师:圆的圆周是否与它相关?

圆的圆周与其直径有关。圆直径长,圆周大;直径短,周长长。

(2)实验验证,目的是让学生找到圆周和直径之间的固定倍数关系,着重解决圆周和直线什么样的物理关系问题。

老师:我们知道方形周长是4倍,那么圆的圆周是直径的几倍?我们可以找到一般的方法来找到一个圆周像一个正方形的圆周吗?

请分组学生做一个小实验,请使用工具的手,用你最喜欢的方式验证圆周长和直径的多重关系,记录在窗体中。请按照我们小组使用什么方法,过程如何?的顺序报告实验。

面板报告:

健康:我们测量的第一个圆的直径是10厘米,圆周是31厘米,圆周是直径的3.1倍。第二圆直径为2cm,圆周为6.5cm,圆周为直径的3.25倍。第三圆直径为5.5cm,圆周为16.5cm,圆周为直径的3倍。

老师:通过计算你发现什么?

健康:每个圆的圆周是其直径的三倍。

问题:它不是所有的圆周和它的'直径有这种关系吗?

最后,老师和学生一起总结:圆的任何圆周总是其直径的长度的三倍。

老师:由于测量错误,导致结果不一样,是正常的。您的研究结果非常接近数学家的结果。谁知道我们称之为这个3倍多?

健康:

老师:你对pi有什么认识?

这是数学家数量的三倍以上,仔细计算后是一个固定数,我们称之为pi的倍数。读为π。发现pi的最杰出贡献者是祖崇志。 Pi是一个无限小的数字,在当今科学技术的飞速发展,计算机已经计算到十亿后的小数点。小学阶段约为3.14。黑板:π≈3.14(课件生成相关信息)

设计意图:通过学生在小组操作,沟通,观察等活动中,见证了知识的发现,了解目的。一些学生早就知道,pi的知识是在交换教师和学生,反映学生为主体获得的。祖崇志的事迹是爱国主义教育的一个很好的例子。使学生感受到中国深厚的文化,发展学生的情感态度价值观目标。

(3)得出结论:你知道计算方法的周长吗?

健康:知道。黑板公式:c =πd,c =2πr

设计意图:推导公式的圆周,解决圆周的问题,圆周的计算只是一个问题。

第三环节:实际应用,解决问题

这部分是使用我们探讨的结果,也就是使用圆周长公式来解决生活中的实际问题。

1,解决课堂上提出的问题:车轮向前滚一周,行程多长?这样就结束了回声。

2,设计三者有一定的实践梯度:①d = 5米,c =?

②r= 5cm c = ③c = 6.28 m d = 3,区分对错,下面的语句对吧?

①π= 3.14()

②大圆的圆周小于小圆的圆周。 ()

③圆的圆周是其半径的2π。 ()

意图:关于pi的设计判断是帮助学生巩固新概念,加深对pi的理解。

第四个链接:谈论收获,课外推广操作:

赤道象地球带,长约40,000公里。你知道地球的半径是多少?

设计意图:在课程结束时,我设置了在室外的延伸的赤道的回声前面。这个设置,课堂教学延伸到课外,提高学生的学习能力。

你有什么?(引导学生学习内容,学习方法,情感体验等)。

七,黑板设计:

圆周

圆是圆的圆周÷直径= pi C÷d =π3.14×20 = 62.8(英寸)

C =πdA:车轮向前滚动一周,行驶62.8英寸。

圆的周长教学设计 篇5

一、教学目标:

1.知识目标:在具体的情境中,结合已有的知识经验认识什么是圆的周长。

2.能力目标:通过测量和计算,了解圆的周长与直径的比为定值,推出圆的周长计算公式,并会运用公式解决现实问题。

3.情感目标:在观察、实验、猜想、验证等活动中,渗透解决问题的一般方法,进一步展学生的转化策略和推理能力;结合圆周率的学习,对学生进行爱国主义教育。

二、教学重、难点:

重点:推导并总结出圆周长的计算公式。

难点:深入理解圆周率的意义。

三、教学准备:

电脑课件、一元硬币、茶叶筒或易拉罐、圆形硬板、纸杯、直尺、水彩笔、细线、小组测量记录表、计算器、剪刀、三角板

四、教学过程:

(一)、创设情境,引起猜想:

1.复习长方形、正方形周长公式。讨论正方形周长与其边长的关系:

长方形周长=(长+宽)×2正方形周长=边长×4教学反思:应温故知新,注意知识点掌握的连贯性,同时为讲解圆的周长做铺垫。

2.激发兴趣

出示课件:同学们,我们已经认识了美丽的图形圆,什么是圆的周长?周长和圆的直径有什么关系呢?

(1)我们的村长在卖村里的树的时候,他用手拃一拃树的周长,就能知道树的直径,估计出树的体积,他是怎样算出直径的呢?同学们想知道吗?今天我们就来探究一下,看看会有什么收获。

(2)看这是圜丘坛俗称祭天台,及细观察,共有三层。上层直径30米,中层50米,下层70米。你发现了什么信息?根据这些信息你能提出什么问题?

3、认识圆的周长

圆的周长又指的是什么意思?(围成圆的曲线的长)出示课件

从准备的一元硬币、茶叶筒、易拉罐、纸杯、圆形硬板等物品中找出一个圆形来,并指出这些圆的周长。

4.讨论正方形周长与其边长的关系

(1)根据已学知识总结正方形的周长总是边长的几倍?

出示课件:正方形周长=边长×4

正方形周长÷边长=4(固定值)

(2)那么圆的周长与什么有关系呢?

5.讨论圆周长的测量方法

(1)讨论方法:刚才我们已经解决了正方形周长的问题,可以测量再计算;而圆的周长呢?各小组同学选出你手中的一个圆形物品来试一试,测量圆的周长,看看你们有哪些好的方法?

(2)汇报交流总结:

①“绳绕法”——用细线缠绕实物圆一周并打开,然后再把绸带拉直测量长度;

②“滚动法”——把实物圆沿直尺滚动一周,数出直尺上的刻度差——还可以先用水彩笔在硬币的圆周长上涂上颜色,然后将硬币在纸上沿直尺滚动一周,测量纸上留下的痕迹的长度;

③“剪圆”——先用剪刀沿着纸杯圆口剪下一条,剪得越细越好,然后测量纸条的长度;

(3)小结各种测量方法:把曲线化成直线进行测量是我们数学中常用的方法。

(4)创设冲突,体会测量的局限性

刚才大屏幕上圜(yuán)丘坛有三个圆,这三个圆的周长还能用刚才的方法进行实际测量吗?(不能)那怎么办呢?有没有一种更为简单的'方法呢?

(5)明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。出示课件:圆周长的计算方法6.合理猜想,强化主体:

(1)我们能不能像求正方形周长那样找到求圆周长的一般方法呢?正方形的周长与它的边长有关,而且周长总是边长的4倍;你认为圆的周长与它的什么有关?(半径、直径)向大家说一说你是怎么想的?

(2)正方形的周长总是边长的4倍,再看这幅图,出示小黑板,猜猜看,圆的周长大概应该是直径的几倍?说明道理:(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

(3)小结并继续设疑:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?出示课件:圆周长÷直径=?

老师请各小组讨论:要想研究圆的周长与直径的倍数关系需要做哪些工作?根据学生的回答老师出示探究建议:

①测量圆的周长和直径;

②记录数据;

③进行计算;

④得出结论。

(二)实际动手,发现规律:

(1)明确要求:

圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,每组同学可以从桌上物品中选出2-3个圆形进行测量,把数据和结论填入表格里,组长记录并计算,其他组员测量,最终求出一个平均值。

(2)学生动手操作,教师巡视指导。

(3)集体反馈数据(选取3~4组实验结果)

2.发现规律,初步认识圆周率

(1)看了几组同学的测算结果,你有什么发现?

(2)虽然倍数不大一样,但周长大多数是直径的几倍?刚才同学们已经对大小不同的圆进行了比较准确的测算,能够得出一个什么结论?

出示课件:三倍多一些。

3.介绍祖冲之,认识圆周率

(1)到底是三倍多多少呢?早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,而这个值就是圆周率,知道他叫什么吗?请同学们看一段资料:

出示关于圆周率的资料。

(2)看后激励:同学们今天自己动手也发现了这一规律,老师相信同学当中将来也会产生像祖冲之一样伟大的科学家。

(3)了解误差

我们将为我们班有像祖冲之一样伟大的科学家而感到骄傲,可不知同学们想过没有,为什么我们现在的测算结果都不够精确呢?那是因为测量和计算过程中存在着误差:

如:测量误差、读数误差、尺子刻度不一致、细线弹性不一致等等,通过这段文字资料你能确定圆周率的值了吗?圆周率是一个无限不循环小数,用希腊字母π表示,实际计算中π取近似值3.14。

(1)一辆自行车车轮的直径是0.6米。车轮滚动一周,自行车前进多少米?

(2)摩天轮的半径是5米,坐着它转动一周,大约在空中转过多少米?

(3)一个木桩的横截面周长是37.68厘米。它的直径是多少厘米?(四)、课内小结,扎实掌握

(1)通过今天的学习,你有什么收获?

(2)现在知道老村长是怎么求出树的直径了吗?

(五)、课外引申,拓展思维

出示课件:小明的妈妈在自家的墙根下建了一个花坛(如图)。你能计算出花坛的周长吗?

圆的周长教学设计 篇6

一、教材分析

“圆的周长”是人教版第十一册第四单元的教学内容。它是研究曲线图形的开始,也是今后学习圆面积及圆柱、圆锥等几何知识的基础。

教材从生活情境入手,先让学生思考自行车绕圆形花坛骑一圈大约有多少米,从而引出圆的周长的概念。接着引导学生思考怎样用不同的方法测量圆的周长,在实践中逐渐体会到有些圆不能测量出周长,怎么办?在此基础上,探索圆周率,并归纳总结计算公式、运用公式解题。为了有效内化计算公式,教材安排了相应的变式应用练习。

笔者以为,本教材有以下特点:一是层次分明、思路清晰、逻辑性较强;二是特别重视实验操作,突出直观教学,让学生在丰富的感性认识的基础上学习新知;三是注重培养学生的实验探究、归纳总结和发现规律的能力;四是通过圆周率的介绍,渗透了爱国主义教育。

二、学生分析

学生在三年级上册已经学习了周长的一般概念,熟练掌握了长(正)方形周长的计算方法。教材直观的情境导入,让学生理解圆周长的概念会很容易。学生已具备测量圆周长的基本技能,关键是圆的周长与什么有关,有什么样关系学生难以想到;或者容易受长方形、正方形周长公式影响,以为圆周长与直(半)径也一定成整数倍关系。这就需要教师适当引导、点拨,通过组织学生进行测量、计算、比较分析等探究活动,找出规律,总结特征。

三、学习目标

知识与技能:理解圆周率的意义,掌握圆的周长的计算公式。

过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育

其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。

四、教学过程:

(一)复习铺垫

1.复习圆的认识。

2.出示长方形、正方形及几个不规则图形,让学生指一指它们的周长,明确其计算结果用的是长度单位。

以上两步同时进行,为理解圆周长的含义做好铺垫。

(二)教学新知

1.在情境中内化概念

(1)具体感知圆周长的概念。

出示情境图(小蚂蚁在正方形和圆形路口爬行),谁能说说小蚂蚁走哪条路近一些?

说明,小蚂蚁走过的路程实际上就是圆的的周长。

师生共同小结:围成圆的曲线的长是圆的周长。

(2)板书课题。

2.在探究中理解公式

(1)设疑激思

鼓励学生用不同的方式测量圆的周长。

用绳测和滚动测量法,测量自己的学具圆获圆形实物的周长。

学生测量了这些圆的周长以后,教师进一步提问:“要是有一个很大的`圆,怎么测量它的周长呢?如学校的圆形花坛。”如果学生说用卷尺绕花坛一周进行测量,教师可以举出更多的圆的例子,如空中划出的圆形,引导学生寻求更为一般化的方法。

学生猜想圆的周长是否也有计算公式时?

激思:圆的周长与什么有关?与直径到底有什么关系?

(2)操作填表

同桌两人一组,正确测量学具圆(实物)的周长和直径。并逐一汇总填表。

再次操作:修正自己的测量结果。

(3)比较发现

分别引导学生竖向和横向看表格,比较找规律,计算圆周长和直径的比值,最后比较、分析、归纳出圆周长是直径的3倍多。

(4)归纳总结

介绍圆周率和祖冲之的故事。

推导公式:圆周率=圆周长/直径;推出圆周长=圆周率×直径,圆周长=2×圆周率×半径。

几下字母公式。

3.在运用中强化公式

教学例1独立解题。

练习:口头列式并讲算理,巩固公式。

(三)巩固练习(图略)

基本练习。判断题,直接求周长。

变式练习。在边长4分米的正方形内化画一个最大的圆,再求周长。

综合练习。求阴影部分的周长。

五教学反思

1课前预设的学生活动太少,数学上没有从活动中探究新知;

2课前对学生原有任职的单位太简单,没有具体到学生。