返回首页
智远网 > 短文 > 教案 > 正文

方程的意义教学设计

2026/01/17教案

此篇文章方程的意义教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

方程的意义教学设计 篇1

教材分析:

方程是含有未知数的等式,因此我设计教学方程的概念是从等式引入的,教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,让学生说出能用一个什么样的式子表示出来,让学生知道方程源于生活。通过引导学生观察一组图形的变化,逐步引出等式,从而由不等到相等,引出含有未知数的等式称为方程。

在此基础上,一方面让学生列举像方程这样的式子,并予以区别,强化方程的意义。另一方面通过三位小朋友写方程,让学生初步感知方程的多样性。

“做一做”让学生判断哪些是方程,使学生进一步巩固方程的意义。在这儿,一般只要求学生初步理解方程的意义,所以只要学生知道什么是方程,能判断就可,不必在概念上过分纠缠,更不必拓展太多,以免加重学生负担。

“你知道吗?”的阅读资料简要介绍了有关方程的一些史料。让学生只需感知,不作记忆的要求。

学情分析:

五年级的学生对方程这块内容是第一次正式接触,虽然在这学期开始的作业本中有几次方程的题出现,但对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的基础开始,从他们知道的东西,如跷跷板到天平,然后再过渡到方程。在教学过程中还要注意把握学生的接受能力,这节课只要学生能理解和判断,不能过分纠缠概念上问题和其他课外的知识,如果要学生了解太多会加重学生的负担,反而使学生因难而失去学习的兴趣。基础不太好、理解能力不太强的学生在学习过程中可能会遇到对新的.内容不容易接受,特别是概念课,所以让学生课前预习会对这些学生有一定的帮助。在课堂上多让学生看形象的事物,从而理解概念,帮助学生更好的学习。

教学目标:1.通过天平演示,使学生初步理解方程的意义;

2.使学生能够判断一个式子是不是方程并能解决简单的实际问题;

3.培养学生观察、描述、分类、抽象、概括、应用等能力。

重点难点:判断一个式子是不是方程;初步理解方程的意义。

课前准备:课件、天平、带有磁铁的卡纸、彩色记号笔。

教学过程:修改意见

一、复习旧知,激趣导入

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有408位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:218+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏着的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、创设情景,导入新课

1.同学们,你们去过公园了吗?玩过翘翘板了吗,如果你和爸爸一起玩,会出现什么样的结果?(翘翘板摇晃不平衡)

师:怎样才能保持两边平衡呢?(让妈妈也加入)

小结;当两边重量差不多的时候,跷跷板基本保持平衡,就能很好的玩游戏了。

三、探究新知

1、师:在数学中与翘翘板原理一样的工具,你知道是什么吗?(生答:天平)

2、介绍:(出示天平)这就是我们这节课要用到的称量工具——天平。天平是由天平秤和砝码组成的。砝码有不同,越大就越重。把要称量的物体放在左边的托盘,右边的托盘放上相应的砝码,当天平平衡、指针指在正中央,说明这个物体的重量就是砝码的重量。

2.课件出示第二幅图:一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。

师:请看这幅图。

思考:看了这幅图你知道了什么?生答。

师:对,我们找到了这样一个等量关系,(卡片出示:1个空杯子=100g)

3.课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。

师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。

问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)

问:如果水重x克,你能用一个式子表示天平两边的结果吗?

生回答后,课件、卡片出示:100+x>100

4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。

师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。

师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)

师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。

学生回答后课件、卡片出示:100+x<300

问:观察列出的两个式子,有什么共同的地方?

这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)

问:能再举几个这样的不等式吗?

(学生列出不等式,教师选择两个写在卡片上贴于黑板。)

5.课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。

师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。

(学生看到都说:平衡了)

问:谁来表示这个式子?

学生回答后课件、卡片出示:100+x=250

问:为什么用“=”呢?(平衡就是相等了)

问:哦,那这个式子与刚才两个不等式比较最大不同是什么?(生能答,不能教师引导:这个式子中间是等号,叫等式。板书:等式)

问:能再举几个这样的等式吗?

(生举例,教师选择三个写在贴于黑板的卡片上。)

这时黑板上的卡片有:

300+200=500 100+x<300

100+x>100 100+x=250

80+x>100 100+50<300

5×a=40 x+200 x+x=8

三、探究交流,抽象概括

1.分类、建构概念

让全班观察黑板上的8个算式,根据它们的特点,小组讨论,试将他它们分类并说明理由。

学生讨论。

问:谁来说说你们是按照什么标准分的?

(1)如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的重点说,其余的口头交流。

(2)让按“是否含有未知数”分的学生把式子分成两堆。

问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(含有未知数)那这几个呢?(没有未知数)

问:你能把这一种(指含有未知数)再分成两类吗?怎么分?指名板演。

(或者让按“是否是等式”分的学生把式子分成两堆。

问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?(是等式)那这几个呢?(不是等式)

问:你能把这一种(指是等式)再分成两类吗?怎么分?指名板演。

根据学生的思路来讲。)

问:你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)

师:像这样,含有未知数的等式我们把它叫做方程。(板书:像这样含有未知数的等式,叫做方程。)一起读一遍。(学生齐读)这也是我们今天这堂课要学习的内容。(板书课题:方程的意义)

2.理解、巩固概念

师:自己理解一下方程的概念,方程必须具备哪几个条件?(未知数和等式)

师:你会自己写出一些方程吗?(生答:会。)请四个学生到黑板上板演写两个,其他同学在作业纸上写。

写好后,请同学们用手势一起判断对错,说说你是怎么判断的。同桌互改。

小结:判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

(出示课件)问:老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)

6+x=14 3+x 50÷2=25 ab=18

6+x>23 51÷a=17 x+y=18

问:通过这几道题的练习,你对方程有了哪些新的认识?

(1)未知数不一定用x表示。

(2)未知数不一定只有一个。

四、巩固提高,形成技能

1.判断

下边哪些式子是方程?(课本54页“做一做”)

35+65=100 x -14>72

y+24 5x+32=47

28<16+14 6(a+2)=42

2.你知道吗?

课件动态显示关于方程的小知识。

你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

3.练练思维

孟老师今年的年龄加上7就是30岁,你知道老师今年几岁了吗?

某同学今年的年龄的2倍是22岁,他今年几岁?

4.提高智慧

小刚集邮共360张,小红集邮共400张,怎么才能使两人的邮票张数一样多?

5.数学游戏:小博士用他的手遮住了所写的内容。他想让你们猜猜他写的式子是不是方程。(用多媒体设计出手的形状盖在方格上)

(1)□+x>40(不是)

(2)x÷□=80(是)

(3)3×□=24(不一定)

让学生判断并说明理由。

(第三题:如果方格中填的是未知数这个式子就是方程,如果填的是8就不是方程,填其它的数就是一个错误的算式。)

五、总结提升。

回想一下刚才我们上课开始写的那个表示我们全校师生总人数的式子,现在老师告诉你一共有432人,你能得到怎样一个方程并知道老师有多少人吗?(24人)好聪明!这是我们下节课将要学习的内容,希望同学们也能像今天一样积极动脑,脚踏实地地走好每一步,去解开更多生活中的未知数,去迎接更多新的挑战!

作业设计:

1.作业本25页。

2.口算一页。

板书设计:

方程的意义

其他式子

含有未知数的等式

3077+ x

等式

不等式

像这样含有未知数的等式,叫做方程。

方程的意义教学设计 篇2

教学目标

1、知识目标:在自主探究的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系。

2、能力目标:培养学生认真观察、思考分析问题的能力。渗透数学来源于实际生活的辩证唯物主义思想。

3、情感目标:通过自主探究,合作交流等教学活动,激发学生兴趣,培养合作意识。

教学重点

理解和掌握方程的意义。

教学难点

弄清方程和等式的异同

教具准备

多媒体课件、作业纸

教学设计

一、情景导入

师生谈话:同学们,你们玩过跷跷板吗?

(课件出示:在美丽的大森林中,山羊、小猴、小狗、小兔在做游戏)

让学生猜测如果让山羊和小猴玩跷跷板,会出现什么结果。

(课件演示验证学生的回答,出现跷跷板不平衡的画面)

提问:怎样才能让小动物开心地玩起来呢?

学生:让小狗、小兔加入到小猴那边。

(课件演示:跷跷板逐渐平衡。并能一上一下动起来。)

教师小结:当两边重量差不多时,跷跷板基本保持平衡,就能很好地玩游戏了。

[评析]:动物是学生们喜欢的形象,以故事情境导入,创设生动有趣的情景,借助多媒体课件演示的优势,使学生初步感受平衡与不平衡的现象。从而紧紧抓住学生的“心”。

二、探究新知

师:在我们的数学学习中,还有一种更为科学的平衡工具,猜猜是什么?

1、直观演示,激发兴趣

课件出示一架天平,教师向学生介绍它的工作原理。

让学生仔细观察,现在天平处于什么状态。

提问:能用一个式子表示这种平衡状态吗?

根据学生的回答,教师板书:50+50=100

2、继续实验,自主发现

1)分小组实验,让学生自己动手做一做(每个小组发一些有重量的砝码和学生自己手中的书本等)

要求:三组设计平衡状态,三组设计不平衡状态。并据此列式。

2)学生实验,教师巡回作指导。

3)学生交流汇报,教师板书:

平衡状态的:

50+10=60

50=20+书……

不平衡状态的:

50+30>两本书

50<三本书……

4)学生动手把不平衡状态的天平调平衡并列式

50+30=四本书

50+10=三本书

5)师生一起把书用字母代替:

50+10=60,50=20+X,50+30>2X,50<3X

50+30=4X

50+10=3X

3、整理分类,认识方程。

1)学生把上没面的式子进行分类

2)让学生明确:像这些含有等号的式子都是等式。(板书:等式,标出大集合圈)

观察右边三个等式与左边一个等式有什么区别?

学生很快明确:右边的等式里都含有未知数。(在等式前面板书:含有未知数)

教师总结:我们把右边这三个含有未知数的等式称为方程。

3)学生齐读方程的意义,同桌互相说出一个方程。

[评析]:这部分教学设计为学生提供了充分的从事数学活动的机会,让学生动手去操作,去合作。让学生通过观察、思考、尝试分类、交流,积极主动的参与到数学活动中来,并初步渗透了数学中的集合思想。

三、巩固拓展

课件出示两个小动物争吵的画面

小狗:我知道了,所有的方程一定是等式。

小兔:不对不对,应该说所有的'等式一定都是方程。

判断谁说的对,并叙述理由。

四、总结

学生阅读数学小知识“你知道吗?”

五、作业

练习十一的1题

教学反思

1、利用兴趣调动学生的积极性,让学生主动参与。

生活是兴趣的源泉,体验是主动参与的动力。通过直观演示、学生实验,调动了学生的积极性和参与的热情,每一个学生都积极的加入了学习的热流中来。教学当中始终注意激发学生的学习兴趣,增强学生学习的信心。给学生提供了充分的归纳、类比、猜测、交流、反思的时间和空间,使学生的思维能力得到了进一步的提高。

2、关注情景教学

在本节课中,将枯燥的方程概念融于浅显生动的情景中。导入利用小动物创设了生动有趣的教学背景,整个教学过程中,学生始终对天平的所有情景保持着浓厚的兴趣。通过天平称重的实验,让学生尝试用数学知识来描述实验现象,使学生获得了等式和不等式的知识。

方程的意义教学设计 篇3

教学目标:

1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。

教学重点:

方程的意义。

教学难点:

正确区分等式和方程这组概念。

教学准备:

简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。

教学过程:

一、课前谈话:

同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?

这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)

当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。

二、新授

1、玩一玩

利用这种现象,科学家们设计出了天平,老师也自己做了一个简易的天平。我们用它来玩一个类似于跷跷板的游戏。好不好?

谁想上来玩?

请你在左边放一个20克的法码,右边放一个50克的.法码,这时天平怎么样?(右边的把左边的跷起来了),在左边再放一个20克的法码,这时天平怎么样?(右边的把左边的跷起来了,说明右边的重量比左边的重),你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)

再在左边放一个10克的法码,这时天平怎么样?(平衡了)

你能也用一个式子来表示这时候的现象吗?(板书:20×20+10=50。学生说加法,则说两个20相加还可用[用水笔板书:]

看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?

老师为你们每一个学习小组也准备了一架简易天平,还有一些法码,以及两块橡皮泥,大家可以利用这些工具,或者利用你们身边一些比较轻的物体,如橡皮、小刀等,来玩一玩,然后把你们玩的时候看到的现象用式子表示出来,好不好?

给你们5分钟的时间,比一比哪个小组又快又好。

哪个小组把自己所写的式子拿上来展示出来。

(有不一样的都可以拿上来)

2、分类

你们对这些式子满意吗?

大家写出了这么多的式子,你能把这些式子按照一个统一的标准分类吗?小组讨论怎么分?按照什么样的标准分?

谁来说说你们是按照什么标准分的?

1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。

2、把学生写的式子分成两堆,让学生分]

师:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?这一种分法,师:你能把这一种再分成两类吗?怎么分?指名板演。

你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)

象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。

3、理解概念

练习:你能举一个方程的例子吗?学生在本子上写一个。

回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)

4、巩固概念

老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)

通过这几道题的练习,你对方程有了哪些新的认识?

(1)未知数不一定用x表示。

(2)未知数不一定只有一个。

一个方程,必须具备哪些条件?

5、比较辨析

师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?

如果老师说,方程一定是等式。对吗?(结合板书交流)

等式也一定是方程。(结合板书交流)

也就是说:方程一定是(等式),但等式[不一定是(方程)]。

你能用自己的方式来表示方等式和方程之间的关系吗?

例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)

三、巩固

师:同学们的图非常形象地表示出了方程和等式之间的关系,1、这些图你能用方程来表示吗?

2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?

如:我班一共有多少人,男生有多少人?如果把女生的人数看成x,你会用方程来表示男女生人数与全班人数之间的关系吗?

师:这里还有一些有关我们学校的信息,谁来读一读。

3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)

四、小结

学了这堂课你有什么想说的吗?你有什么想对老师说的吗?

方程的意义教学设计 篇4

教学内容:

人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。

教学目标:

1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。

2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。

3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。

教学重点:

抓住“等式”“含有未知数”两个关键词初步建立方程的概念。

教学难点:

方程与等式的关系;方程中等量关系的建立。

教学准备:

课件、写式子的卡片、磁钉。

教学过程:

一、认识天平,谈话铺垫

教师(出示天平图):这是什么?同学们知道天平的用途吗?

一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。

二、探究新知

(一)天平演示,初步感知等与不等。

1.出示天平图1。

现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)

2.(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用

g表示,那么杯子和水共重多少呢?(100+ )

3.如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。

这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。

4.来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。

5.(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?

【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。

(二)分类整理,建构概念

1.观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)

2.学生反馈,教师根据反馈在黑板上移动式子。

预设1:按左右相等和不等分类(补充等式和不等式);

预设2:按是否含有未知数分类。

注:教师在按照两种分类方式摆放式子时整理成如下表格所示:

含有未知数

不含有未知数

等式

不等式

3.(指表格)像这样,含有未知数的等式称为方程(揭题)。

4.写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)

5.说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)

(三)概念辨析,理清等式与方程之间的关系

1.“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)

2.这两个式子是否是方程呢?

反馈分析:

(1)式1:一定是。为什么?

(2)式2:一定是等式,可能是方程。

(3)思考:等式和方程有什么联系呢?

(4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。

【设计意图】方程与等式的关系是本节课的教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。

三、实践反思,巩固提高

1.“做一做”第2题及练习十四第2题:看图列出方程。

学生练习并进行反馈。

反馈侧重:使学生明确,可以根据量相等来列出方程。

2.练习十四第3题:看情境图,思考数量关系再列方程。

(1)从图上你知道了什么?

(2)你能根据你知道的数量关系列出方程吗?

(3)学生自行根据数量关系列出方程,并进行反馈。

【设计意图】能用方程表达简单情境中的.数量关系,也是《义务教育数学课程标准(20xx年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。

四、总结回顾,介绍历史

1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)

2.教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)

【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。

方程的意义教学设计 篇5

教学目标:

1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。

2、借助天平让学生理解方程及等式的意义。

3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。

教学过程:

一、创设情境,激趣导入。

谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)

我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。

二、合作探究,获取新知。

(一)理解等式的意义。

找出白鳍豚这组资料的等量关系,用字母表示。

1、师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?

1980年比20xx年多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。

1980年只数—20xx年只数=300只

1980年只数—300只=20xx年只数

20xx年只数+300只=1980年只数

2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出20xx年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)

3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)

4、借助天平来研究等式。

(出示天平)你对天平了解多少?谁给大家介绍一下?

师:你观察的真仔细,天平是一种用来称量物体质量比较精密的仪器,当指针指在标尺的中央,天平就平衡了。

师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(10<20)如何才能平衡呢?(左再放一个10克的砝码)

师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)

师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)

(二)理解方程的意义。

1、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:

(1)找出人工养殖的只数与野生的只数的关系,用文字表示出来。

(2)用含有字母的等式表示出这个关系。

(3)在天平上表示出这个等式。

小组合作探讨,汇报交流,得出:人工养殖的只数x10=野生只数

10x=1600 ,1600÷x=10或1600÷10=x天平左盘放10个x只,右盘放1600

只。我们通过分析它们之间的等量关系得出了等式10x=1600.

2、找出东北虎这组资料的.等量关系,再写出含有未知数x的等式。

师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。(1)20xx年只数×3+100=20xx年的只数。

(2)3×+100=1000或1000-3×=100(3)天平左盘3x和100,右盘1000.

我们通过分析它们之间的等量关系得出了等式3x+100=1000.

3、揭示方程的意义

师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)

我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)

师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。

师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)

师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?

三、巩固练习,加强应用。

看来同学们已经掌握了今天所学的知识,下面老师来考考你。

课件出示课本自主练习1,2,3,4。

四、回顾反思,总结提升。

通过这节课的学习,你有什么收获?

方程的意义教学设计 篇6

教学目标:

1、经历从生活情境到方程模型的建构过程。

2、理解方程概念,感受方程思想。

3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

教学过程:

一、情境创设,初建相等关系模型。

1、师出示天平图,认识吗?

师:天平可以称出物体的质量是多少。

2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

(左右倾斜各一幅,平衡的一幅。图略)

学生会选择图3,老师顺着学生的思路出示图3天平平衡图

图3为什么能称出两只苹果的质量?

你能用一个式子表示出天平两边物体的质量关系么?

100+100=200

图1和图2为什么不能称出两只苹果的质量呢?

你也能用一个式子表示出天平两边物体的质量关系吗?

100+100>100、100+100<500

3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

你的小脑袋里有等式吗?说一个试试。

除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

师:没想到,同学们对等式是这么的熟悉。

二、借助基础,拓展等式外延。

1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

(书上四幅图略)

选一个等式说一说它表示什么意思?

天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

突出含有未知数的等式

这些含有未知数的等式你见过吗?

生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

三、进一步拓宽对等式的理解。

1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?

(师出示四幅生活情境图)

(1)铅笔盒与笔记本共20元。

(2)借出的书与剩下的书共150本。

(3)3瓶相同的色拉油,每瓶x元,共8元。

三、明确特征,归纳概念。

其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的'意义。(板书)

揭示数学上我们把含有未知数的等式叫做方程。

四、深刻领悟,挖掘内涵。

1、黑板上的其它式子为什么不是方程?

2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

36-7=29、60+x>70、8+x

6+x=14、7+15=22、5y=40

活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

(在活动中理解等式与方程的关系)

五、实践应用,拓展外延。

1、你能看图列出方程吗?

图1:天平(2x=500)

图2:四个物体16.8元

图3:两杯水共有450毫升

2、从文字表述中找出方程

(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

(2)张师傅每天做x个零件,用了6天做了780个零件。

(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

出示:5x=200(可提示:如天平图等)

个别交流的基础上同桌互说。

六、全课总结:学习到现在你有哪些收获?

从不能用方程表示到能用方程表示图中的数量关系的一种演变。

图1:买4个小熊猫玩具,每个x元,120元不够

图2:买3个,每个x元,120元还不够

图3:买2个,每个x元,120元正好

延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?