返回首页
智远网 > 短文 > 教案 > 正文

《圆的周长》教学设计

2026/01/24教案

此篇文章《圆的周长》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《圆的周长》教学设计 篇1

一、说教材

《圆的周长》选自冀教版小学数学六年级上册的第四节。本课教学是以长方形、正方形周长知识为认知基础的,是对前面所学"圆的认识"的深化,也是后面学习圆的面积等知识的基础。本课起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

根据课程标准和教材编写意图,确立本节教学目标如下:

1、知识与技能目标:使学生直观认识圆的周长,知道圆的周长的含义。

2、过程与方法目标:通过摸一摸,动手操作,猜想验证等方法使学生亲历整个探寻知识的过程,从而掌握圆周长计算的由来和相关知识。

3、情感态度与价值观:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团结合作精神。

教学重点:探究并发现圆的周长与直径的关系。

教学难点:运用圆的周长知识解决一些简单的实际问题。

二、说教法、学法

根据教学内容和学生的认识规律,我首先采取课件演示的方法帮助学生认识圆的周长,渗透转化思想;然后利用实验法引导学生认识、理解圆周率,并推导出圆周长的计算公式,培养学生操作技能,提高学生分析、比较、推理、概括的能力;最后运用自学辅导法,引导学生自己去思考、测量、计算,最终发现圆的周长与它的'直径和半径的关系,从而学生提高自学水平。在教学中,注重学生的独立思考及小组交流,交互运用各种学习形式,达到发展智力,培养能力的教学目标。

教学准备:

1、多媒体课件。

2、每个学生都准备三个大小不同的、直径为整数的圆片,一根线条,一把直尺。

三、说教学过程

(一)创设情境,激情导入

(二)自主合作,探究新知

⒈教具演示,直观感知,结合认知认识圆的周长。

学生独立实验,用绕线法、滚动法量出圆的周长,教师指导操作要点,培养学生的动手实践能力。

2.小组合作,完成实验。

a.量一量、记一记:学生测量圆的周长、圆的直径,然后记下数据,培养学生的实践操作能力。

b.比一比:比较数据,揭示关系。

学生继续实验并算出每个圆周长除以它的直径的商,把商记录下来。通过计算学生发现:这三个圆中,每个圆的周长,都是它的直径长度的3倍多一些。得出结论:所测量的其他圆的周长也是它的直径的3倍多一些。

在实验操作过程中培养学生动手操作的技能、技巧,提高学生分析、比较、推理、概括的能力。

3.介绍圆周率。

①先介绍表示这个3倍多一些的数,是一个固定不变的数,我们称它为圆周率。用式子表示:圆的周长÷直径=圆周率(π)

②介绍π的读写方法。

③最后结合画像介绍古代数学家祖冲之与圆周率的故事,激发学生作为中华儿女的自豪感。同时指出:圆周率是一个无限小数,小学阶段取它的近似值为3.14。

④学生总结归纳出圆的周长计算公式:

圆的周长=圆的直径×圆周率,用字母表示为C=πd或C=2лr。

(三)解决问题。

通过练习,达到了巩固知识的目的。这个教学环节是归纳整理本节课学习的知识和解决问题的策略,使所学的知识系统化,整体化,便于学生对知识的掌握。

(四)全课小结,归纳提升

我是用谈话的方式进行小结的:

①你学到了什么?(引导学生进行总结、梳理所学知识)

②你是怎么学到的?(归纳解决问题的策略)

③以你的经验,生活中还有哪些类似圆的周长的实际问题?

通过以上四个教学环节的处理,我想能够完全达到所预设的教学目标,完成教学任务。

四、说板书设计

圆的周长

绕线法滚动法化曲为直

圆的周长总是直径的三倍多一些。

圆周率:圆的周长和直径的比值叫做圆周率π

л=3.1415926…… л≈3.14

C=лd或C=2лr

《圆的周长》教学设计 篇2

【教学目标】

1、让学生明白什么是圆的周长。

2、理解并掌握圆周率的好处和近似值。

3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。

5、透过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

6、培养学生的观察、比较、分析、综合及动手操作潜力。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、教师准备图片。

【教学过程】

一、激情导入

1、动物王国正在举行动物运动会可热闹了,想不想去看一看?

2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

二、探究新知

(一)复习正方形的周长,猜想圆的周长可能和什么有关系。

1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)

4、猜想:你觉得圆的周长可能和什么有关系?

(二)测量验证

1、教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。

②观察数据,比较发现。

提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

3、比较数据,揭示关系

正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的'周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

(三)介绍圆周率

1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

(四)推导公式

1、到此刻,你会计算圆的周长吗?怎样算?

2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

3、明白半径,能求圆的周长吗?周长是它半径的多少倍?

三、运用公式解决问题

1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

3、钟面直径40厘米,钟面的周长是多少厘米?

4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

四、课堂小结

透过这节课的学习你想和大家说点什么?

这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。

《圆的周长》教学设计 篇3

1.简单而富有内涵的引入

余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。

有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。

2.自发而科学严谨的探究

关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!

3.数学思想和文化的渗透

在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的`思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!

思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?

《圆的周长》教学设计 篇4

教学目标:

1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

教学重点:能正确、熟练地进行圆周长和面积的计算。

教学难点:从探究活动过程中去发现圆与正方形之间的关系。

教学准备:课件,学具。

教学过程:

一、复习旧知,梳理体系

直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

小组合作,让同学们把所学的知识整理一下,然后进行汇报。

汇报交流,课件出示相关内容。

(1)圆的认识:

圆心O:决定圆的位置;

直径d:决定圆的大小;

半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

圆是轴对称图形,有无数条对称轴。

(2)圆的周长:

围成圆的曲线的长度叫圆的周长。

圆周率:周长与直径的比,是个无限不循环小数。

圆周长的计算:。

(3)圆的'面积:

由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

圆面积计算:。

圆环的面积:。

【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

二、基本练习,整合知识

教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

1.说说下面各题的最简整数比:

(1)一个圆的半径和直径的比是多少?(1:2)

(2)一个圆的周长和直径的比是多少?(:1)

(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

周长的比是多少?(2:3)

面积的比是多少?(4:9)

【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

(1)这个公园的围墙有多长?

教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)

(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

三、探究学习,培养能力

1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

(2)剪完圆后,哪张白铁皮剩下的废料多些?

教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

(3)根据以上的计算,你发现了什么?

【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

四、回顾总结,交流收获

教师:说说这节课我们学习了什么?你有什么收获或问题?

【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

《圆的周长》教学设计 篇5

教学资料:

圆的周长(小学数学九年制义务教材第十一册).

教学目的:

1.让学生明白什么是圆的周长.

2.理解圆周率的好处.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的好处.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指幻灯图片(长方形正方形三角形)问:这些是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是周长?

出示:平面上封闭图形一周的长度,就是它的周长。

想一想:什么叫元的周长

出示:围成圆的曲线的长叫做圆的周长。

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都能够用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?这天我们就来研究这个问题.

三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和哪些部分有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑出示:

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁明白我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书63页,默读“其实”到“π≈3.14”.以及“你明白吗?”

七、看书后回答问题:

1.什么叫圆周率?

2.你明白是谁把圆周率的值精确到7位小数吗?

师:早在一千五百年前祖冲之就已经把圆周率精确到了7位小数了,他的发现比外国数学家早一千多年,一千多年是何等漫长的时间啊!为了纪念他,科学家把月球上的一座环形山脉命名为祖冲之山,这是我们中华民族的骄傲!

3.明白了圆周率,还需明白什么条件就能够计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式就应怎样表示?

此刻你们已经掌握了圆的周长的计算公式,下面你能根据所学的知识决定下面的说法是否正确?

决定:

1、π=3.14()

2、只要明白圆的直径或者半径,就能够明白圆的周长()

3、大圆的圆周率比小圆的圆周率大。()

求下面圆的周长:(见课件)

师:十分不错,大家基本掌握了圆的'周长的计算方法,我们能够用这些知识来解决生活中的一些问题,下面看例题1:

八、出示例1:

一辆自行车车轮的半径是33厘米。车轮滚动一周,自行车前进多少米?小明家离学校一千米,骑车从家到学校,轮子C大约转了多少圈(π取3.14,得数保留两位小数。)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:c=0.33单位:米

c=2πr1000÷2=500(圈)

=2x3.14×0.33

答:骑车从家到学校,轮子大约转了500圈。

=207.24(cm)

≈2(米)

答:车轮滚动一周约前进2米.

九、课堂练习:

(一)应用题:

1.一张圆桌的直径是0.95米。这张圆桌的周长是多少米?

2.摩天轮的半径是5米,坐着它转动一周,大约转过多少米?

3.汽车轮胎的半径是0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米

(二)选取填空:

1、车轮滚动一周,前进的距离是求车轮的()

A.半径B.直径C.周长

2、圆的周长是直径的()倍。

πC.3

3、大圆的周长除以直径的商()小圆的周长除以直径的商。

A.大于B.小于C.等于

十.思考:已知圆的周长,如何求它的半径或直径呢?

圆的周长=直径×圆周率

直径=圆的周长÷圆周率

半径=圆的周长÷圆周率÷2

《圆的周长》教学设计 篇6

教学内容:苏教版小学数学第十册第98—99页。

教学目标:1、理解圆周率的意义,掌握圆的周长的计算公式。

2、通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。

教学重点:理解和掌握求圆的周长的计算公式,能计算圆的周长。

教学难点:动手操作,探索圆的周长与直径的关系。

教学具准备:教师准备多媒体课件、学生实验报告表。学生准备直尺、直角三角尺两把、一角、五角、一元硬币名一枚、绳子。

教学过程:

一、联系生活,激活内需

同学们,为了倡导低碳生活、共建绿色家园,重庆一支自行车队伍头戴钢盔,身穿印有“环保、低碳”字样的文化衫,人手一辆自行车,从奥体中心出发,驶向主城各个方向,庞大的阵容吸引了不少市民关注。(课件出示图片)但是,他们选择的自行车却是不一样的,请同学们看两张图片。(课件出示自行车的两张图片及议一议的内容)

议一议:(1)车轮转动一周,谁的车走得远呢?为什么?什么是车轮的周长?

(2)车轮的周长和什么有关系?圆的周长与什么有关系?圆的周长与直径有怎样的关系呢?

揭示课题:圆的周长

【评析:从现代生活理念出发,也是从学生已有的知识经验出发,感知车轮转动一周的远近与车轮的周长有关,车轮周长的大小就是圆的周长的大小,圆的周长与直径的长短有关。一方面让学生受到了环保教育,另一方面也让学生自我发现研究圆的周长要从研究周长与直径的关系入手,也产生了进一步探究的必要性。】

二、实验操作,探究新知

1、在情境中内化概念

同学们已经知道圆的周长指的那部分,那你们拿出自己准备的硬币,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?

师生共同小结:围成圆的曲线的长是圆的周长。

2、测量圆的周长

(1)既然圆的周长是曲线那能不能用直尺直接测量呢?怎么测量呢?(让学生独立思考10秒左右)

(2)四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)

(3)小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(结合学生的方法配以课件演示)

课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)

(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。

3、探索规律

圆的周长与直径到底有怎样的关系呢?利用你手中的硬币及工具来测量一下圆的周长与直径。下面请同学们选用自己喜欢的方式以小组为单位进行测量,记录测量数据,并通过计算寻找周长与直径的关系,看看你们组发现了什么。把结论填在表的下面。(课件出示实验报告表,并让每组拿出课前发的表格。)

物品名称

周长

直径

周长与直径的关系(计算)

一角硬币

五角硬币

一元硬币

我们发现的规律是:

小组合作完成,全班交流实验结论。预设:圆的周长是直径的3倍多一些。

4、老师操作,即课件演示测量圆的直径和周长的过程。

师:老师也测量了圆的周长与直径,你们想看一看吗?演示课件。

总结:圆的周长总是直径的3倍多一些。

5、认识圆周率

(1)实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。

(2)听了这个故事,你有哪些感受?师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。

(3)师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。

“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。

根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)

【评析:以小组学习的形式,放手让学生去探求圆的周长,目的'是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。这里提供三种不同的圆让学生求周长,向学生渗透“化曲为直”的数学思想及方法。通过介绍圆周率,在头脑中完善对圆的周长计算方法的认知,促进学生的自我建构,激发一定的民族自豪感和探索精神。】

三、巩固应用,内化知识

1、独立完成。

(1)“试一试”。

计算例4中三个自行车车轮的周长大约各是多少厘米。

(2)“练一练”。

有一种汽车车轮的半径是0.3米。它在路面上前进一周,前进了多少米?

3、小组合作完成。

(1)你知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程吗?要解决这个问题你想得到什么样的数据?

(2)(出示图片)圆形花坛的直径是20米,小自行车车轮的直径是50厘米,绕花坛一周车轮大约滚动多少周?

【评析:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程,体会到学以致用。实例计算可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为课后实践题打下很好的伏笔。】

四、回顾反思,评价小结

通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?

师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!

五、课后拓展,走进生活

小组合作完成,应用这节课学到的知识,想办法测量一下,从学校大门口到影剧院门口的距离大约是多少米。

【评析:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力。】

板书设计:

圆的周长

圆的周长是直径的3倍多一些

圆的周长=直径×圆周率

C=πd

C=2πr