《循环小数》教学设计
此篇文章《循环小数》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《循环小数》教学设计 篇1
一、教学内容:
教材第64页例。
“试一试”和“练一练”,完成练习十二第1-3题。
二、教学目标:
1、 使学生理解小数乘小数的意义,掌握小数乘小数的计算法则。
2、 能正确运用计算法则计算小数乘小数的乘法。
3、 培养学生的合作能力和迁移类推能力。
三、教学过程:
(一)预习案
1.复习。
0.52+0.48= 0.17+0.33= 3.6+6.4= 0.8×3= 3.7×5= 46×0.3=
2.回忆整数乘法的法则。
(二)导学案
1.教学例1。
(1)出示例1。
(2)提问:房间的面积有多大?先估计一下。 3.6×2.8≈( )
想:3×3=9,面积在9平方米左右。 4×3=12,面积在12平方米左右。
(3)提出:列竖式计算怎样算呢? 把这两个小数都看成整数,很快计结果。 相乘后怎样才能得到原来的积?
(4)学生讨论。
得出:两个因数分别乘十,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的'积是10.08。
2.试一试。
(1)提出:要求阳台的面积是多少平方米?怎样列式?2.8×1.15=( )
(2)计算2.8×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?
(3)得出:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.22。
3.小数乘小数的计算法则。
(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?
(2)在小组里说说小数乘小数应该怎样计算。
(3)先按整数乘法算出积是多少。
看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固案
练一练。
(1)你能给下面各题的积点上小数点吗?
(2)计算下面的题。
3.46×1.2 1.8×4.5 10.4×2.5
(3)总结小数乘小数的法则。
(四)实践练习十二1到3题。
《循环小数》教学设计 篇2
【教材分析】
循环小数是人教版《义务教育课程标准实验教科书·小学数学》五年级上册第二单元的教学内容。教材通过例8和例9,先让学生做除法,通过实际计算,发现这些除法无论除到小数点后面多少位都除不尽。接着让学生观察它们商有什么特点,根据学生列出的除法竖式,引导学生发现商和余数的关系,从而引出循环小数的概念。再通过两个数相除如果不能得到整数商,商会出现的情况来进行分类比较,认识有限小数和无限小数。
【教学目标】
知识目标:初步理解循环小数、有限小数、无限小数的意义,能正确地区分有限小数和无限小数,了解循环节的概念和循环小数的简便记法。能力目标:培养发现问题、提出问题、解决问题的能力,提高观察、分析、比较、判断、抽象概括能力。
情感目标:感受数学的美与乐趣,激发探究的欲望,增强学好数学的信心,初步渗透集合思想。
【教学重难点】
教学重点:使学生理解循环小数的意义,区别有限小数和无限小数。教学难点:使学生感受数学的美与乐趣,激发探究的欲望。
【教学片段】
片段一:
谈话:同学们最喜欢什么季节?
学生各自陈述了自己喜欢的季节,并说明了喜欢理由。
师:一年有四季,四季是按什么顺序出现的?生:是按照春季、夏季、秋季、冬季的顺序出现的。
引导:春季、夏季、秋季、冬季,一个挨一个按一定的顺序出现,我们
把它叫做“依次”,(教师板书:依次。)
师:冬天过去了,接下来呢?(指名回答)
生:冬天过去了,接下来又是春季、夏季、秋季、冬季。
师:春夏秋冬之后又是春夏秋冬,这就是“重复出现”,(板书:重复
出现)之后又是春夏秋冬、春夏秋冬?这是“依次不断重复出现”。(完整板书:依次不断重复出现)
师:说说生活中还在哪些地方见过这种“依次不断的重复出现的”的现
象。(学生举例)
生:日复一日,周复一周,年复一年。生:“从前有座山,山里有座庙”的故事。生:昼夜交替的现象。?
师:生活中象这种“依次不断重复出现”的现象很多,我们把这种现
象还可以叫做——循环现象。(板书:循环)
【以学生生活中最熟悉的一年四季,循环往复的现象入手,将数学学习与学生的生活紧密联系在一起,让学生在实际例子中逐步理解“依次不断重复出现”的具体含义。在此基础上,让学生列举生活中类似的现象,生活资源信手拈来,数学与生活间的桥梁悄然搭建,对新知的铺垫悄然无息。】片段二:
计算73÷3之后,观察竖式:
师:(出示问题)余数不断重复出现几?商呢?
商不断重复出现的是几个数字?是从哪一位开始重复出现的?生:余数不断重复出现1,商不断重复出现3。生:商不断重复出现一个数字。
(板书:一个数字)
生:“3”是从小数部分的第一位开始重复出现的。
(板书:小数部分,从第一位起)师:那你知道算式后面的商应该怎样写吗?
生:可以写成24.333?“?”表示没有除尽,后面有无数个3。(板书:73÷3=24.333?)
师:观察9.4÷11的竖式,你又有什么发现?
生:余数依次不断重复出现6和5,商依次不断重复出现5和4。生:商依次不断重复出现两个数字。(板书:两个数字)
生:“5”和“4”是从小数部分的第二位开始依次不断重复出现的。
(板书:小数部分,从第二位起)师:商怎么写?
生:可以写成0.85454?,表示后面有无数个“54”。
(板书:9.4÷11=0.85454?)
师:象24.333?、0.85454?这样的小数我们也给它取个名字?叫……
循环小数(板书课题)
师:24.333?、0.85454?都是循环小数,那么什么是循环小数呢?(学生讨论,然后汇报)
生:从小数部分的“第一位起”和“第二位起”等等,有一个数字和
两个数字依次不断重复出现,这样的小数就是循环小数。师:(引导)从小数部分的“第一位起”和“第二位起”就是从小数部分的某一位起;“一个数字”和“两个数字”可以说成是一个数字或几个数字;
板书:一个小数,从小数部分的某一位起一个或几个数字依次不断重复
出现,这样的小数叫做循环小数
【先让学生通过做题发现问题,然后教师为学生提供了一个思考与合作交流的空间,充分调动学生的学习积极性,成为学习的主人,让他们动脑、动眼、动口研究问题,获取新知。学生在亲自体验知识的形成过程重,了解了知识的来龙去脉,形成知识的经验,产生情感的体验。】
【课后反思】
一、创设有效的问题情境,激发学生的求知欲望
一节课是否能让学生有兴趣的、自觉的、有效的学习,课堂导入很重要,它直接影响着一节课的教学质量。合适的导入,能大大激发学生的学习兴趣,活跃课堂气氛,启迪学生思维,促使学生主动参与学习。而且,合适的导入,有承上启下,降低认识坡度、分散教学难点的作用。课堂教学中,合理创设和运用情境,能激发学生的学习兴趣,帮助学生
理解教学内容,提高教学效率。在这节课的教学中,我通过简单轻松的谈话引入新课,一环扣一环,使问题更加深入,将难以理解的概念的在谈话中分解成块,逐个击破,在学生头脑重形成深刻的概念。而且,在谈话的过程中,把学生的情感活动与认知活动有机结合起来,使学生在生动和谐的课堂氛围中充分锻炼、提高自己。
二、引导学生探索,让学生成为课堂学习中真正的参与者。
每一个概念的形成,学生都知道它的形成过程,而不是知道结论,教师应充分利用教科书,尝试练习,互相讨论等方法,让每一位学生都在积极的状态下参与学习。在这节课中,我采用多种多样的教学方法来吸引学生的注意。把数学知识融入生活,让学生更有兴趣,更易理解和掌握。如让学生列举生活中依次不断重复出现的现象,使学生对依次不断重复出现有更加深刻的.认识,从而顺利引出循环的概念,加深了学生的印象,然后逐步过渡到计算中的循环小数。我从学生的实际出发,抓住学生学习中出现的问题,帮助他们进行分析,让学生在观察中发现共性,掌握概念。学生往往容易忽视那些显而易见的规律,对于问题往往停留在表象上,没有进行深刻思考,这个时候,教师就要引导学生仔细观察,对主要部分的关键问题一定要提醒学生,引起他们的注意力,吸引学生进行深入思考,并养成注意听课的习惯。在这样长期有效的学习中,学生对于学习的参与度才会贯穿到整节课的始终,反之,如果课堂教学的效率不高,教师的引导可有可无,抓不住应该引导的地方,则会让学生养成上课注意力不集中,参与度不高,学习效率低下的情况。
本节课虽然是概念教学,但是教师并未停留于学生对数学概念的认识上,而是让学生经历知识的获得过程,经历思维的形成过程,充分凭借学生已有的知识背景,提出问题、解决问题,使学生始终能主动探究,真切体验。本课教师为学生搭设了自主探索的舞台,很好地把握了学生思维的契机,整个过程的安排都从学生的实际中出发,尊重学生的需要,让学习过程与学生的发展有机的结合,真正使学习更加有效,让学生获得更全面的发展。
《循环小数》教学设计 篇3
教学目标:
1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。
2.初步认识有限小数和无限小数。
3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。
教学重点、难点:理解循环小数的'意义,会用简便方法读写循环小数。教学准备:教师在小黑板上准备多题练习题。教学过程:
一.
创设情景师:你们最喜欢星期几啊?
师:一个星期七天的出现有什么规律?
引导学生:一个星期的星期一到星期日总是不断地出现。(板书:不断、出现)
(四)小结学习内容
师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学知识说明这几道题的商吗?
出示:2÷9 = 0.222……
5÷12 = 0.4166……
9÷55 = 0.16363……
三.巩固练习
1、判断题。(对的画“√”,错的画“×”)
(1)0.7777是循环小数。
(2)0.07是混循环小数。
(3)2.07 = 2.07
(4)1.3>1.333
(5)循环小数13.24324……可以写作13.24。
2、找数。在下列数中
(1)比1小,循环节是三位数字的纯循环小数有((2)比1大,循环节是一位数字的混循环小数有(10.101
3.212
0.07
0.414
(四)课堂作业:练习七第7、8题。
(((((2.45)))))。)。0.101)
循环小数教学设计
(五)课堂小结与质疑。
《循环小数》教学设计 篇4
教学内容:
第九册第三单元第27—29页。
教学目标:
1.让学生在自主探究、合作学习中理解并掌握循环小数、无限小数、有限小数、无限不循小数以及循环节的意义,正确读写循环小数。
2.能用循环小数表示除法里的商。
3.培养学生的抽象概括能力,观察比较能力。
4、向学生渗透集合的思想,激发学生的学习兴趣。
教学重难点:
正确理解循环小数的意义。
教学过程
一.故事引入
1.讲故事。老师给同学们讲一个故事:从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山……
师:像这样依次不断重复地出现的现象叫循环现象。
问:生活中还有象这样依次不断重复出现,无穷无尽的现象吗?你能举例吗?
2、联系实际生活
师:在生活中你们遇到过这样依次不断重复出现的循环现象吗?谁能举例说一说。
师:同学们知道的可真不少,其实在数学中也存在着这样有趣的现象。在数学王国里,就有这么一位特殊的小数朋友(板书:小数)大家想认识这位新朋友吗?
师:在认识这位新朋友之前,我们先来一次计算比赛,好不好?
[采用从直观到半抽象的方法去认识新的概念,遵循了儿童的认知规律。这一环节的设计,有利于培养学生的逻辑思维能力。]
二、研究问题,探究新知
(一)研究有限小数和无限小数
1.分组计算,感知概念。
(1)0.595÷3.4(0.175)(2)34÷6(5.66······)
2.学生选择喜欢的一道计算,指名派个代表上来板演。1分钟后喊停。
3.师:引导看黑板,核对第一题,宣布第一组获胜。
4、第二题,你们有什么想法?(商除不尽)1。34÷6= 5.66······,引导学生观察商有什么特点。生:老师,我发现这道除法题除不尽,商总是重复出现6。
师:为什么会重复出现“6”呢?
生:因为余数重复出现“4”了,所以……师:这么说,34÷6的商里有多少个“6”呢?
生:有无数个“6”。
师:既然是无数个,可以怎么表示呢?
生:我认为可以用省略号表示有无数个“6”。
(板书:34÷6= 5.66······)
5.指出:像0.175,这样小数部分的位数是有限的小数给它个名称叫有限小数。(板书:有限小数)那么第2题的商除得尽吗?除不尽可以用省略号表示,猜一猜,这样的小数会叫什么名称呢?为什么?
(板书:无限小数)
(二)认识循环小数
1、出示59.6/11,让学生除到商是五位数小数时停笔。
师:想一想,如果继续除下去,商会怎样?
生:商里会依次不断的重复出现“1”和“8”。
师:你是这样想出来的呢?
生:因为余数重复出现“2”和“9”,所以商就会重复出现“1”和“8”。
师:是不是这样的情况呢?继续除除看。
师:谁能说出这道题的商。
生:59.6除以11等于5.4181818等等。
师:“等等”用什么符号表示?能不能不写省略号?为什么?
生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多1818。师:(出示下组题)能说出省略号表示的意思吗?
4/9=0.444…… 7/12=0.58333…… 13/55=0.2363636……
[让学生在尝试练习中认识循环小数,引导学生发现当两个数相除出现循环小数时商和余数的规律。这就重视了让学生掌握知识形成的过程,有利于学生今后的再学习。]
2、概括。
师:观察这些小数,它们都有什么特点?
生:一个小数,几个数字重复出现。
生:一个小数,几个数字依次不断地重复出现。
生:一个小数,从某一位起,一个数字或者几个数字依次不断地重复出现。
师:那这样的小数,叫什么小数呢?(循环小数)。这就是我们今天要学习的“循环小数”(板书课题),谁再来说一说什么叫“循环小数”?
师:说的很好,请同学们看看书上写的和XX同学刚才说的还有什么不同?
生:书上多了“小数部分”这几个字。
师:书上为什么要强调从“小数部分而不是从整数部分的某一位起,一个数字或者几个数字依次不断
重复出现。
3、判断。
师:请同学们判断下面哪几个数是循环小数,为什么?(课件显示)
777…… 3.1415926……
3.23232323
6.0373737
7.516516……
学生判断后老师组织讨论。
(1)师:3.232323是循环小数吗?
师:小数部分的“23”这两个数字不是依次重复出现三次吗?为什么不是循环小数呢?
生:虽然“21”重复地出现三次,但没有“不断地”重复出现,所以它不是循环小数,它是有限小数。
(2)师:3.1415926……是无限小数吗?
师:是循环小数吗?为什么?
生:因为小数部分没有出现一个或几个相同的数字,所以……
(3)师:在0.547745……这个小数中,“5”、“4”、“7”这三个数字已重复出现了两次,他是不是循环
小数呢?为什么?
生:虽然“5”、“4”、“7”这三个数字重复地出现,但没有依次地出现,所以它不是循环小数。
(三)循环节
师:“3.333……”中不断地重复出现的数字是哪一个?
(3)在“5.2727……”中不断地重复出现的数字是哪一个?(2、7)在循环小数中,依次不断重复出现的`数字有个名称,请看教科书第101页。
师:什么叫循环节?请找出以上判断题中循环小数的循环节。
生:这个数的循环节是“21”。
师:对吗?
生:不对,因为这个数不是循环小数,所以它没有循环节。
师:对的,循环节只有在循环小数里才会出现,如果不是循环小数也就没有循环节。
(四)循环小数的简便记法
1、讲解。
师:循环小数的一般写法是把循环节写出两遍到三遍,然后写上省略号。不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一圆点,这个点叫循环点。
2、练习。
(1)写出5.333……的简便记法。
(2)写出判断题中循环小数的简便写法
三、巩固练习
1、判断
2、找数
四、课堂小结
师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学的知识说明这几道题的商吗?
《循环小数》教学设计 篇5
教学目的:
1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。
2、培养学生总结规律的能力,使学生既长知识,又长智慧。
3、培养学生学习数学的积极情感。
教学重点:进一步掌握相关概念并建立联系。
教学难点:对循环小数的实际应用。
教学过程:
一、主动回顾,知识再现:
上节课我们学习了什么知识?
二、单项训练,夯实基础:
1、进一步理解循环小数的概念。
下面哪些数是循环小数,如何判断的?
0.666…3.27676…301415926…40.03666…100.7878
0.06262…3.203203…0.2142857142857…70.2641
2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?
有限小数
小数循环小数
无限小数
无限不循环小数
三、综合练习,运用提高:
1、求循环小数的近似值:P30第3题
先请学生说说取近似值的方法,再让学生独立完成。
2、P30第6题
先观察这些小数的特点,再试一试.
请学生说出判断大小的过程,教师适时评价。
方法:把这些简便记法的循环小数还原。
师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。
四、独立练习:P30第4、5题。
课后小记:
在今天的课上,我向学生说明了为什么所有除法算式的商不可能为无限不循环小数。因为余数必须要比除数小,所以任何除法算式余数的可能性是有限的。当除的次数比余数可能性的个数多时,必定出现与前面余数相同的现象。我用1除以7来举例说明,学生领悟得很快,绝大多数学生明白了其中的奥妙。
其次,我还向学生介绍了无限不循环小数即是初中所要学到的“无理数”。有学生(张子钊)问“我们学不学无理数呢?”,我简单介绍了六年级即将认识的小学阶段唯一一个无理数派。孩子们对无理数十分感兴趣,我又利用课余时间为他们补充介绍了无理数产生的数学史。
第八课时用计算器探索规律
教学内容:P29例10、做一做,P31练习五第7—9题。
教学目的:
1、能借助计算器探求简单的数学规律。
2、培养学生观察、归纳、概括、推理的数学能力,培养学生学习数学的'兴趣和探索意识。
3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。
教学重点:运用规律进行计算。
教学难点:发现规律。
教学过程:
一、导入新课
同学们,你们知道计算器有什么好处吗?
计算器有这么多好处,它还有一个特别的功能,就是帮助我们发现规律。(板书课题)
二、自主探索
1、出示例10:
请大家先独立操作,思考你发现了什么规律,再在小组内说一说。
①商是循环小数②下一题结果是上一题的2倍(3)循环节都是9的倍数……
不计算,用发现的规律直接写出后几题的商。
问:你是根据什么来写的商?
2、用计算器验证。
小结:一旦发现规律,就可以运用规律解决问题。
3、独立完成“做一做”:
请学生先用计算器计算前4题,找出积的规律。
思考:你发现了什么规律?小组交流。
根据规律很快写出后两题的结果,全班交流校对。
三、请学生总结,也可质疑。
教师激励:肯定学生去探索规律后的秘密的探索精神,鼓励他们继续努力;希望学生在生活中,学习研究中去发现探索更多的规律。
四、独立练习:P31第7-9题。
激发学生兴趣
1、使用计算器,小组合作
任意给出四个互不相同的数字,组成最大数和最小数,并用最大数减最小数,对所得结果的四个数字重复上述过程,你会发现什么呢?
2、小组汇报,展示过程,讨论发现。
3、采访学生,有什么感受。
师:仿佛掉进了数学黑洞,永远出不来,非常的神奇。
课后小记:
1、练习五第7题计算1234.5679*9,部分学生的计算器只能显示八个数字,所以结果为11111.111,其实这题的积应该是四位小数,正确结果为11111.1111。遇到这种情况,可先作指导。请学生看题判断积是几位小数,然后再解释说明。
2、数学黑洞学生们很感兴趣,如果有机会可再为学生们提供一些这种有规律的小知识,激发他们的学习兴趣。
3、作业第9题第1小题的的每后一个数都是前一个数乘2的积,再加0。1所得,这个规律难度比第2小题要大,许多学生较难发现,所以要适当引导。
第九课时解决问题(一)
——归一问题
《循环小数》教学设计 篇6
教学目标:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学重点:
理解循环小数的意义,并能用循环小数的近似值表示除法的商
教学难点:
理解循环小数的意义,并能用循环小数的近似值表示除法的商。
教学过程:
一、创设情景,生成问题
先听老师讲一个故事,看你能从这个故事中发现什么规律?
(教师讲故事:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,……)
生:这个故事总是在重复同一个内容。
师:不错!大家已经发现这个故事的`一个特点了。
板书:不断重复
师:谁能根据这个特点接着老师的故事继续往下讲?
让几个学生继续讲这个重复的故事。
师:照这样讲下去,你发现这个故事还有一个什么特点?
引导学生讨论后回答:这个故事一直不断重复出现
随学生的回答板书:
1(完整板书:依次不断重复出现)
2、然后让学生说说生活中还在哪些地方见过这种“依次不断的重复出现的”的现象。
学生举例后教师小结:生活中象这种“依次不断重复出现”的现象很多,我们把这种现象还可以叫做——(循环现象,板书:循环)
(设计意图:采用故事的形式导入,使学生感到特别爱听,兴趣盎然,将故事与数学融合在一起,使学生很容易理解“循环”的含义,从而为后面学习新知作好的铺垫。)
二、探索交流,解决问题。
师:生活中有很多这种循环现象:
1.我班男生400米谁跑得最快?成绩如何?和“王鹏”比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。
2、初步感受循环小数的特点。
观察竖式,你发现了什么?(组织学生小组内交流)
可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。
师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。
师:那么商如何表示呢?你为什么使用省略号?(师板书)
3、总结概括循环小数的意义
出示:28÷1878.6÷11
先计算,再说一说这些商的特点。(请生板演计算结果)
学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个……。
4、在学生用自己的话归纳出了什么是循环小数之后,让他们看书学习第28页,解决以下问题:
(1)什么是循环小数?你觉得重点词语有哪些?(2)什么是循环节?
(3)怎样简便写出循环小数?(4)怎样读循环小数?
学生反馈交流,根据学生回答,教师划出重点词并板书简写。
一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
5.加深理解:循环小数后边的省略号表示什么?(小数部分的位数是无限的)
6、巩固练习:下列哪些是循环小数?
0.999…52.52525…4.1677…3.212121…3.1415926…
学生评议。
7、介绍简便记法
如5.333…还可以写作5.3、7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。
(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)、
学生反馈交流,根据学生回答,教师划出重点词并板书简写。
7、理解有限小数和无限小数的意义。
师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明。
接着让学生选择自己感兴趣的信息独立计算,提醒学生如果遇到问题,先自己思考,然后在小组内讨论,同时请两名学生板演。
小组讨论后指名汇报:在计算中遇到了什么情况?出现了什么现象或规律?
返回首页