返回首页
智远网 > 短文 > 教案 > 正文

小学数学教学设计

2026/01/26教案

此篇文章小学数学教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

小学数学教学设计 篇1

小学数学教学设计集锦15篇

作为一名老师,就不得不需要编写教学设计,借助教学设计可以提高教学效率和教学质量。教学设计要怎么写呢?下面是小编为大家整理的小学数学教学设计,仅供参考,欢迎大家阅读。

小学数学教学设计 篇2

教学目标

1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

2.掌握分数乘、除法应用题的分析、解答方法.

教学重点

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

教学难点

准确判断单位1,正确地解答分数应用题.

教学步骤

一、铺垫孕伏

(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

(二)判断单位1.

1.鹅的只数是鸭的 .

2.甲的 是乙.

3.乙是甲的 .

4.男生人数的 相当于女生.

5.小齿轮的齿数占大齿轮的 .

(三)列式计算.

1.4是12的几分之几?

2.12的 是多少?

3.一个数的` 是4,求这个数.

二、探究新知

(一)教学例3第(1)题

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1.读题并找出已知条件和问题

2.提问:应把谁看作单位1?是根据题中哪句话判断的?

3.画图.

4.列式解答

答:鹅的只数是鸭的 .

(二)教学例3第(2)、(3)题.

池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

1.画图理解题意

2.列式解答

3.集体订正

(三)小结

这三道题有什么相同点和不同点?解题关键是什么?

1.结构上

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样.

2.解题思路上

相同点:都要首先弄清谁作标准,把谁看作单位1;

不同点:根据已知、未知的变化,确定不同的解答方法.

解题关键是:正确分析题中的数量关系,明确谁作单位1.

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.

三、全课小结

这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.

四、巩固练习

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?

五、课后作业

(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?

六、板书设计

分数乘、除法应用题对比

1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

412=

答:鹅的只数是鸭的 .

2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

12 =4(只)

答:池塘里有4只鹅.

3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

4 =12(只)

答:池塘里有12只鸭.

小学数学教学设计 篇3

教学目标:

1、知识教学点:理解和掌握约分的意义和方法,掌握最简分数的概念

2、能力训练点:熟练进行约分培养灵活运用所学知识解决实际问题能力

3、德育渗透点:引导探索知识间的内在联系培养良好的学习习惯

教学重点:

掌握约分的方法

教学难点:

很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。

教学步骤:

一、铺垫孕伏

投影出示,思考30秒,能说的就站起来说

1、数能被2整除,能被5整除,能被3整除。

2、指出哪两个数是互质数3和8 12和18 5和12 3、说出28和42的公约数

4、填空根据性质

(复习能被2、5、3整除可以能很快看出分数的分子分母是否含有公约数2、5、3,复习互质数,可为最简分数概念降低坡度。

复习公约数,为约分时除以公约数做必要辅垫。

填空是分数基本性质学习后的直接应用,也就是约分的'变形形成。既说明分数基本性质,又引出下例。)

二、探究新知

1、教学例1

(1)出示例1:把化简

提问:看到例1这个题目,你想做些什么?

(2)引导学生自由问答,并板书:分子分母都比较小,同它相等

(3)提问:你准备怎样化简呢?根据思考题分小组讨论

①的分子分母含有公约数。

②用去除分子分母,得到。

(4)交流发言,生说师演示,再生说生演示师板书

(让学生猜想做什么,理解化简词义:化--转化、大小相符,简-简单、分子分母都比较小。出示思考题,分小组讨论自学,让学生自由主动地去学习、交流。

学生说,老师直观演示,再让学生边说边演示,让学生直观地体会到化简过程。)

2、教学最简分数和约分意义

提问:还能继续化简吗?为什么(因为3和4是互质数)

明确:分子、分母是互质数的分数,叫做最简分数(板书)

是最简分数,你还能举例吗?会说站起来说。

下面的分数是最简分数吗?

(出示P111上做一做)指出下面哪些分数是最简分数

(指着不是最简分数)这些不是最简分数,通常要像这样进行化简,这就是约分板书课题约分

提问:什么是约分,你能根据刚才的做法说说吗?

生试说,同桌说,指名说把一个分数比成同它相等,但分子分母都比较小的分数,叫做约分(板书)默读一遍

(先教学最简分数的概念,调整了教材的顺序,但更符合思维顺序。再指出不是最简分数的可进行化简,一方面说明化简的范围,又及时指出这就是约分的概念,显得自然。

由直观过程抽象概括出约分概念,体现从直观到抽象的教学过程。)

提问:又怎样来约分,怎样写呢?

3、教学例2

(1)出示例2:把约分

(2)分小组,根据思考题看书讨论①一般怎样约分,怎样写?

②也可怎约分,怎样写?

③约分要注意些什么?

(3)指名交流生说师板书

(4)小结:你能将3个问题连起来说吗?

(小组讨论自学例2约分,让学生先学,教师后教。对约分的几种形式正确书写,指出可用你喜欢的写法。)

4、反馈练习

P112下做一做把下面的分数约分

指名两生玻片书写,其余写在书上

讲评说出的约分过程,结合书写,表扬写得好的学生。

(目的在于掌握约分方法和书写形式,并结合书写表扬学得好写得好的学生,进行学习习惯的教育。)

三、巩固练习

1、P112 1观察下面每个分数的分子和分母,哪些有公约数2,哪些有公约数5?哪些有公约数3?

2、P112 3下面哪些分数没有约成最简分数

3、独立作业P112 2任选6题,放音乐《二泉映月》。

同桌互批全对得优,得优的同学可以站起来。

(抓住学生想既对又快做好的心理,以介绍经验的方法,调动练习的积极性,从而强调约分过程中的两个注意点。

练习1训练迅速找准约分过程中用几去除分子分母,练习2用红绿卡判断并改正,明确约分结果一般要是最简分数。

作业让学生自选,体现自主性。并在音乐声中愉快完成,得优的同学可以自己站起来,感受到成功的喜悦。)

四、全课小结

学生小结

师小结:

今后作业中的分数,作为最后结果一般都要约成最简分数。

你能找出老师黑板上还有哪些分数要约成最简分数吗?

发现的可以自己上黑板来改。

我们要向他们学习,作业要认真仔细,做完要复看检查,好不好?

(针对约分过程中,容易出现的错误,引导学生主动勇敢地上黑板改错,这对反应快的学生又是一次成功的表现,并结合进行学习习惯教育。)

五、质疑

今天大家学得都很认真,还有没有什么问题你暂时不明白?

(质疑是对本课教学情况的再现反馈,也为下次课提供学生方面的真实情况)

小学数学教学设计 篇4

教学内容:

义务教育新课程标准实验教科书数学第五册第70~71页。

教学目标:

1.学生掌握乘法估算的方法,会进行乘法估算。

2.在解决现实问题的过程中,培养学生估算的意识和习惯;培养学生归纳概括、迁移类推以及应用所学知识灵活解决实际问题的能力。

3.在估算的过程中,探索解决问题的策略,并能运用数学语言进行表述和交流;感受数学与生活的紧密联系,激发学生热爱数学、学好数学的情感。

教学过程:

一、猜数引入

老师想了一个数,它是个两位数,你们猜它是几?(随着学生的猜测,教师用“大了”和“小了”提示)

回忆刚才我们猜数的时候,是不是一下子就猜出来了呢?像刚才这种在老师提示下进行有根据的猜测,叫估计。其实,在我们的生活和学习中有很多地方要用到估计。

[说明:课前的猜数游戏,学生兴趣盎然,为新课的引入做好了铺垫。]

二、感受估计的需要

1.今天的课堂上,除了老师和你们外,还来了你们的一些老朋友呢!(课件呈现8只机器猫)来了多少只机器猫?(当数量少的时候,我们一眼就可以看出来了)

快数一数,这里有多少?(课件呈现满屏幕的机器猫,造成学生数不清的困难)

2.这么多,一下子数不清,我们可以估一估呀!(学生第一次估的差距比较大,有1000、100、500、200等)

师:怎样估计能精确些?

生1:圈出一份估一估,然后再看有这样的几份。

生2:给这些机器猫排排队。

……

3.课件给机器猫排队,排成8行。(按先估每行大约有几只,然后乘8的方法估一估)

4.师:机器猫每行有29只,排成8行,大约有多少只?该怎么列式?

[说明:创设数机器猫只数的情境,分成以下几个层次进行教学:1.直接呈现数量较少的机器猫,学生一眼就可以观察得出;2.呈现很多机器猫,造成数不清的困难,引导学生感受估计的需要;3.由于眼花缭乱,第一次估计不精确;4.通过交流估计的方法,达到比较精确的估算。这样四个层次的教学,让学生主动感受和体验到了估算的必要性与作用。]

三、交流估算的方法

1.29×8大约等于多少?把你的想法,在练习本上表示出来。

2.交流展示学生的估算方法。

A.29×8≈240,把29看成30。

(师介绍约等号的含义、写法和读法,并与等号进行比较)

B.29×8≈160,把29看成20。

C.29×8≈290,把8看成10。

D.29×8≈300,把29看成30,把8看成10。

……

[说明:给学生创设一个良好的心理环境,让他们的思考和情感得到完全的放松与充分的尊重,这样他们的想法和意见才得以尽情地流露与表述,不同的看法和结论才可以在一步步的表达中得到完善。学生在此出现了几种不同的方法,虽然有的方法还不恰当,但每个学生的思维和情感得到了发展,并在与他人方法的比较中感受到了不同估算方法的优越性和局限性。]

3.这几种方法有什么相同的地方吗?

4.同样是把因数看成整十数,但估出来的结果差距很大,这是什么原因啊?

5.通过交流明确:应该把因数看成和它最接近的整十数再估算。(去掉29×8≈160)

6.剩下的三个结果,哪个与准确值最接近?(课件演示每种估算方法)

(A是多估了1个8,C是多估了2个29,D是多估了2个29和1个8;这里不需要向学生直接说明,只要让学生感受即可)

小结:这几种方法都可以,同学们可以根据需要选择最合适的方法进行估算。

7.全班42人,如果送给每人5只机器猫,估一估,这些机器猫够送吗?42×5≈200(只)

和前面一题进行比较:29×8≈240(估大),42×5≈200(估小)。

8.试一试。

21×6≈ 48×5≈ 397×3≈ 510×7≈

9.小结:我们在估算的时候,都是把这些乘法算式中的某个数看成整十、整百、整千的数,那是不是可以看成任意的整十、整百、整千的数呢?(要看成接近的整十、整百、整千的数)

四、拓展提升

其实,在我们的生活中,有很多地方都和估算有很大的联系。陆老师今年暑假的北京之游就碰到了很多和估算有关的知识,让我们以数学的眼光去看看吧!

第一站:长城

长城离陆老师所住的宾馆有点远,汽车每小时行驶53千米,3小时才到达,长城离宾馆大约有()千米。

第二站:美丽的北海公园

告示:每条大游船限乘120人。

正好有4个旅游团,每个团有31人,估算一下,他们能同时上一条船吗?

[说明:此题引发了学生的`争论:约等于120,却为什么不能上船?出现认知上的矛盾,学生通过争论后,明白把31看成30是估小了,所以结果也比准确值小了。在这个过程中,学生懂得了估算和精确计算之间是有误差的,在运用估算结果来解决实际问题时,还必须考虑现实情况。]

比较:31×4○120(让学生明白估算的另一个用途)

第三站:天坛公园

每张门票8元,陆老师所在的旅游团共有39人,320元钱够买门票吗?

为什么同样是估算,刚才不能上船,而现在买门票却又够了呢?

学生通过辨析比较发现,刚才是估小了,而现在是估大了,所以够了。

比较:39×8○320

第四站:购买北京特产

每种特产,老师准备都买8份,请你们帮助我算一算,大约要花多少元钱?

反馈:1.(58+11+33)×82.58×8+11×8+33×8≈(60+10+30)×8 ≈60×8+10×8+30×8=800(元) =800(元)

比较两种方法,哪种简单?想一想,老师大约带多少钱就够了?(让学生明白估算还可以为我们的生活提供帮助)

说明:

《数学课程标准》指出,“估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值”。而学生估算习惯的培养与能力的提高,很大程度上取决于教师的估算意识。在平时的教学中,我充分挖掘估算题材,重视进行估算示范,使学生认识到估算的必要性和优越性,并关注估算在培养学生逻辑思辨、辩证看待问题能力上的作用。

1.大胆改变教材内容,使学生产生估算的需要,体验估算的现实性。

乘法的估算,学生以前并没有接触过。在这节课上,我根据学生的实际情况,把教材的内容做了一些调整,将学生已有的经验和所学习的新内容自然地融合到一起,并通过现实问题,让学生明白估算的必要性。与此同时,课中所设计的一系列练习,都是学生在实际生活中会碰到的现实问题,并具备用估算解决的现实需要,因而整节课都能让学生感受到浓厚的生活味。

2.深入挖掘教材内涵,让学生体验数学课堂的思辨性。

成功的数学课,既能将复杂的问题简单化,也能将简单的问题深化。“乘法估算”一课,教师们都会想到要让学生体验估算的“必要性”,设计的学习素材要富含现实气息,但仅仅停留在这个层面上是不够的。如果深入研究教材我们就可以发现,在现实运用估算的过程中,分为两种情形:一是根据估的结果就可以解决相关问题;二是因为估的结果有时估大有时估小,单凭估出来的数据并不能直接准确地回答所要解决的问题,即还需结合现实情况进行考量。我在教学中充分考虑了这些情况,精心设计情境,让学生在情境中体验到“估大”、“估小”的情况及如何运用这样的结果解决问题,同时穿插比大小的训练,从而将现实性、思辨性较好地统一起来。

小学数学教学设计 篇5

教学内容:

练习十一1—3题,教材42页例1

教学目标:

1、掌握平均数的意义和求平均数的方法

2、知道移多补少求平均数的方法

3、会根据数据列出算式求平均数

教学重点:

掌握求平均数的方法

教学难点:

正确计算平均数

教具准备:

课件,小黑板,统计表

教学流程:

一、导入

拿8枝铅笔,指4名同学,要平均分怎样分?

每人2枝,每人手中一样多,叫平均分。2是平均数

二、学习交流

1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图

(1)从图中,你知道了什么信息?

(2)他们四人怎样分才能一样多?

(3)平均分后是多少个?

2、课件展示统计图的变化过程

(1)指名展示

(2)这种方法叫什么?

点拨:移多补少

3、要求平均数,还可以怎样想?

(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?

14+12+11+15=

(2)平均分成4份,怎么办?

52÷4=

4、归纳

要求平均数,可以先求出()数,再平均分几份

5、算一算你们小组的平均身高,交流展示求平均数的方法和过程

6、算出各小组的`平均体重,说说你们是怎么算的?

三、交流展示

展示自己的学习成果,说清求平均数的方法和过程

四、达标测评

1、练习十一第2题

(1)什么是最高温度?什么是最低温度

(2)你知道了哪些信息?

(3)填写统计表:本周温度记录

(4)计算出一周平均最高温度和最低温度

(5)说说你是怎么算的?

2、测量小组跳远成绩,求平均数

五、总结

通过这节课的学习活动,你有什么收获?

小学数学教学设计 篇6

教学目标:

1、经历以米、厘米为单位正确测量物体长度的过程,体验1米到底有多长,并会估计物体的长度。

2、体会米的含义,知道厘米、米之间的关系。

3、在活动中体验测量与生活的密切联系,激发学生学习数学的兴趣,发展学生的空间观念。

教具准备:新铅笔、米尺、数学课本、文具盒、1米多长的绳子。

一、创设情境

1、师生利用课前共同准备的直尺、三角板、等工具测量小组中各物品的长度。

2、指导学生同桌合作,用不同的测量工具测量绳子的长度。

学生在测量的过程中会随机比较、选择用哪些测量工具比较合适。(主要是直尺或米尺)

3、用米尺测量课桌的长度。

二、体验探究

1、认识米,、知道1米有多长。

2、让学生以组为单位,直观体验1米有多长。

3、学生在观察、交流过程中认识米与厘米之间的关系。

归纳:100厘米=1米1米=100厘米1m=100cm

4、让学生联系身边的事物,找出几种长度是1米的物品。

三、实践应用

1、1米大约等于几枝铅笔的长度?

2、学生自主量一量教室中比较大的.物体的长度(或高度)。教师要与学生共同完成测量活动。

3、出示书中5页练习题。

4、课外小作业:让学生回家测量家中物体的长度。

让学生自己操作既符合儿童的心理需求,调动学生的学习积极性,又可以为后面的测量做好铺垫,培养学生发散思维。

让学生充分发挥自主性,通过动手操作亲自感知,从实践中总结出“量比较长的物体或距离,通常用‘米’做单位”。

对1米多长的绳子的测量以及1米20厘米的书写既是对用米做单位的再次体验,又为后面的练习做好了铺垫。

让学生以一把米尺为准,直观体验1米有多长。

这种徒手做动作既使学生感兴趣,乐于参与的活动,又是让学生再次体验,从而建立1米有多长的空间观念。