小数的产生和意义教学反思
此篇文章小数的产生和意义教学反思(精选6篇),由智远网整理,希望能够帮助得到大家。
小数的产生和意义教学反思 篇1
1、小数意义这一课属于概念教学,如何让学生建立准确的概念,如何引导学生自主探究,本节课做的不够。我只担心时间不够,甚至没让学生上台进行实际测量,不敢放手,所以本节课显得教师在唱独角戏,总觉得自己说得太多,学生说得太少。
2、概念教学如何自主探究、合作交流,改变学习方式值得研究。归纳小数意义是本节课的难点,这里的问题设计我修改了几次,但我觉得总是不能很好的揭示小数的本质,特别是十分之几、百分之几、千分之几的分数为什么能写成小数,有的学生可能没有理解。所以在教学时,我采用“告诉你”的方法,这种教学方法可能有所欠缺。
3、教师预设的问题指向目标不明确,对于提问的细节、有效性需要仔细、反复的推敲,是提问有效、高效。课堂上教师的语言显得太过直白、随意。虽然是常态课录像,但总能发现自己的欠缺,比如:备课时只顾自己设计自己的'教学环节,而忽略了备学生这一重中之重的
因素,造成自己和学生课堂交流的不畅,还有自己的课堂节奏单一,没有激起学生思维;整节课自己往里“灌”的知识太多,所以学过之后的检测效果不太好,这就给自己的常态课一个明确的方向,不能胡子眉毛一把抓,要击中要点,这就是在以后的教学中自己要攻克的要塞。
小数的产生和意义教学反思 篇2
新课程理念下,在概念的教学中,教师要防止重结论、轻过程的做法,积极组织有效的数学活动,确立学生在数学活动中的主体地位,让学生在数学活动中去体验、去思考、去构建数学概念。对比教学设计和上课的实际效果我有如下想法:
1、猜数导入,将学生注意力引向课堂。
课始以猜测老师的身高和讲桌的长度激发学生兴趣,进而动手测量讲桌的长度,提问两个问题:这个长度能不能用整米数表示?并出示算式3÷2=通过计算,能得到整数的结果吗?由问题体会小数产生的必要性。就此很顺利的引入了小数课题。这个环节也表明:兴趣是最活跃的心理成分。当学生对某种事物发生兴趣时,他们就会主动地、积极地、执着地探索。
2、引导学生循序渐进地理解小数的意义。
这部分内容是本课教学重点。数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的'获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米= 1/10米=0.1米时,渗透等量替换思想,并以此为基点展开,先让学生初步感悟十进制分数与一位小数之间的联系,进而鼓励学生由此及彼、迁移类推得到许多一位小数,再让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上,让学生迁移、类比认识二、三位小数。归纳小数意义时,渗透抽象化方法,在学生多层面、多角度丰富感知的基础上,再加以抽象去掉数量、单位名称,最后抽象出十分之几、百分之几、……可以写成一位小数、二位小数……,使学生顺利地从直观思维过渡到抽象思维。
3、不足或困惑
小数意义这一课属于概念教学,如何让学生建立准确的概念,尤其是在探索小数的意义这一环,本来用熟悉的米尺让孩子去直观认识,应该为学生实实在在的创设一片自主探究的天地,而我是一路“扶”着孩子走过来的,没有把学习主动权真正交给学生,因为自己最怕上的就是要带着学具,希望学生能够小组合作进行操作探究的课,学生一操作,就要花费很多时间,这样练习时间往往不够。如何引导全体学生自主探究,并且能够在操作中领悟到一些什么,而且还有一些练习的时间,就更好了。
教和学是一个学生感知、感受、感悟的过程。这个过程中,学生应该处于主体地位,教师应该发挥主导作用,但这个主导作用的发挥必须围绕着学生这个主体得到发展为中心。只要是有利于学生主体发展需要的,就应该是我们教学需要努力的。
小数的产生和意义教学反思 篇3
本节课我首先通过“练一练”“看一看”生活场景,激起学生的学习兴趣,也使数学与生活的联系更为紧密,数学学习显得更有意义。
新授时,我通过让学生观察米尺,伙伴合作在米尺上指一指、比一比、说一说,全面感知一位小数的意义,这样不仅让学生对一位小数的感知更全面、更深刻、更准确,也更具体形象。小数的意义较为抽象,学生掌握起来有一定困难。在初步感知一位小数意义后,充分运用学生已有的知识经验和生活经验,通过类比,迁移,小组讨论完成两、三位小数的意义的教学。
数学学习的本质在于数学思维、经过对一位、两位、三位……小数意义的具体分析后,我再通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后得出了小数的'意义和小数相邻两个计数单位间的进率。
新授后,我设计了反馈的题目和感悟生活中的小数,还有爱迪生的一句用加法描述的名言,引导学生从身边的现象入手,不断巩固本节课所学知识。
通过本节课的教学,使我感到在教学细节上还需完善自己,还要提高自己驾驭课堂的能力,苦练基本功。
小数的产生和意义教学反思 篇4
《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。对比教学设计和上课的实际效果我有如下想法。
1、猜数导入,将学生注意力引向课堂。
课始当我打开课件,呈现的是一个由多个长方形组成的一个大长方形,学生们马上就兴奋了,老师,这是什么啊。老师,这下面有什么啊。我说:这个长方形下面有一个很特别的数看看谁能猜出来。当一个个小长方形不断飞走数字一步步凸显一直到8.9这个数出现学生都处于兴奋状态。就此很顺利的引入了小数课题。这个环节也表明:兴趣是最活跃的心理成分。当学生对某种事物发生兴趣时,他们就会主动地、积极地、执着地探索。
2、注重方法渗透,引导学生探究
本节课中,在教学1分米=1/10米=0.1米时前我增加了让学生在熟悉的人民币单位背景中探究分数与小数的联系这个环节。具体的作法是:(1)出示一张一元的人民币问:谁能从中拿出一角钱。有学生说去买九角钱东西就还剩下一角钱;有学生说把这一元钱换成10角钱再拿一角就行,我请这个学生上台示范给大家看。然后再问:一角钱用元作单位用分数怎么表示,用小数怎么表示。学生很快写出了1元=1/10元=0.1元思想后让学生自学书上关于1分米=1/10米=0.1米内容。让学生感悟十进制分数与小数之间的'联系,进而鼓励学生在学习过一位小数的基础上,让学生迁移、类比认识二、三、四位小数。最后让学生自己归纳抽象出十分之几、百分之几、可以写成一位小数、二位小数使学生顺利地从直观思维过渡到抽象思维。
3、不足或困惑
小数意义这一课属于概念教学,如何让学生建立准确的概念,尤其是在探索小数的意义这一环,本来用熟悉的米尺让孩子去直观认识,应该为学生实实在在的创设一片自主探究的天地,而我是一路扶着孩子走过来的,没有把学习主动权真正交给学生,因为自己最怕上的就是要带着学具,希望学生能够小组合作进行操作探究的课,学生一操作,就要花费很多时间,这样练习时间往往不够。如何引导全体学生自主探究,并且能够在操作中领悟到一些什么,而且还有一些练习的时间,那该多好!
小数的产生和意义教学反思 篇5
小学四年级的学生对小数并不是全然不知的,在日常生活中已经有所接触,但由于小数的意义具有一定程度的抽象性,学生理解小数的意义还有一定的困难,针对这一现状,我在教学中充分考虑学生的生活经验,找出生活与数学知识的契合点,让学生亲历知识的学习过程。所以新课开始,以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,通过做估一估、测一测的游戏引入小数的产生,测量时、有的能用整数表示,有的`得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。
第二个环节,以米、分米、厘米、毫米为背景,让学生亲历知识的学习过程,学生先通过自学体会到了小数的意义,然后全班交流得到:小数是十进分数的另一种表示形式,十分之几用一位小数表示,百分之几用两位小数表示……尽管这是一种规律,但教学时,我是通过举例的方式,从0.1米还能用什么数来表示,引导学生利用1米=10分米找到小数、分数、整数之间的联系,依次类推,0.5米、0.9米是多少分米,用分数怎么表示?接着,认识一位小数;以同样的方法认识两位小数、三位小数、四位小数.顺理成章得概括出小数的意义。学生在这样的过程中,学到的不仅仅是知识,还有迁移、合情推理和逻辑思维能力。既重视学生独立思考的过程,又重视发挥集体智慧,组织好学习同伴间的合作与交流活动。允许并鼓励学生从多角度思考问题,大胆发表个人见解。孩子们在静思中,在合作商量中,轻松、愉快地学到知识,增长本领,从而达到乐学、会学、创造性学的境界。
不足之处:
1、对教材钻研不够。在教学小数的产生时,应再加一个自学环节,使学生通过自学知道:当计算得不到整数时,也要用小数表示。
2、驾驭课堂的能力还需提高。学生对小数的计数单位理解不是很好,在课中就应引导学生回忆并举整数的计数单位的例子来帮助学生理解。
小数的产生和意义教学反思 篇6
——“数形结合”在教学中的一点尝试
《小数的产生和意义》是人教版四年级下册《数学》教材第四单元第一课时的内容。在教学这一内容时,我运用“数形结合”的思想,进行了两次不同的尝试教学:
第一次教学: “小数的意义”这部分内容我是这样来处理的:借助课件直观形象的优势,让学生在想象、类推中理解“小数的意义”。教学过程如下:
课件演示:把1米平均分成10份。让学生观察后思考:把1米平均分成10份,每份是多少分米?如果用米作单位写成分数是多少米?写成小数是多少米?学生回答后追问:这样的3 份或7份用分数和小数又怎样表示呢???学生借助课件写出相应的分数和小数后,引导他们观察板书归纳出“一位小数”的概念 。 在“两位小数、三位小数”的意义也采用这个方法,让学生在推理、想象中探究。为了让学生更清楚地看到把1米平均分成100份,每份是1厘米,我利用多媒体课件把1厘米放大。然而课件展示1厘米的长度和1分米的长度差不多。给学生一定的误导.结果是:0.1米、0.01米、0.001米的实际长度是多少?学生头脑中一点印象也没有。以至于在后面学习小数的“计数单位”时感到很空洞,他们不知道“计数单位”是指什么?为什么要以0.1、0.01、0.001??作为小数的计数单位?
反思教学上述教学,存在着这样几个问题:其一、没有帮助学生在头脑中建立0.1米、0.01米、0.001米??具体表象。学生以课件为支撑,借助想象去推理。由于缺乏操作体验的过程,学生头脑中的0.1米、0.01米、0.001只是几个概念而已,至于 0.1米、0.01米、0.001米??实际长度是多少?头脑中没有印象。这样抽象与表象之间缺乏应有沟通,影响了后面“小数计数单位”的教学。第二学生对小数的计数单位缺乏体验的过程.教学中没有设计用0.1、0.01、0.001??等为计数单位来找小数的体验过程.其三、课件的误导。课件出示1分米、1厘米的放大图,展示给学生的1厘米、1毫米与实际长度相差甚远。反而对学生产生的误导:认为1厘米与1分米的长度相等。
针对上述问题我进行了如下的'修改:第一、在运用多媒体课件的同时,加强学生的操作体验。如教学110 米就是0.1米时,增加了在直尺上任意找0.1米的活动。让学生知道这个0.1米是指十份当中的任何一份,而不是单指0-1之间的这一份。同时让学生围绕“0.1米”这个基本的计数单位在直尺上找小数的过程:如在米尺上找出0.3米,说一说你是怎样找出0.3米的?0.3米是几分之几米? 0.3米里面有几个0.1米。或在米尺上找出7个0.1米,想一想用小数表示是多少米?用分数表示又是多少米???让学生在“找”“说”的活动中,把0.1米的实际表象深深印在脑海里,同时也感悟到一位小数都是由几个0.1组成的,1米里面有10个0.1米。0.1是一位小数的计数单位.第二、为了防止放大图给学生的误导,在出示课件后安排了让学生在直尺上找1厘米、1毫米的活动。让他们在头脑中建立1厘米、1毫米正确的表象。
按照上述两个教学环节的设计,我进行了第二次试教。教学中我发现:“学生在直尺上找0.1米”时思维非常活跃,主要体现在以下几个方面:一是:在直尺上找0.1米时,学生欣喜地发现:把1米平均分成10份,0.1米不仅仅是指0-1之间的长度,8-9之间的长度是1米的110 也是0.1米。“不同的位置为什么表示的长度都是0.1米?”学生面带疑惑。经过观察、比较、讨论学生明白了:原来它们都是指十份当中的任何一份。他们还发现:1米里面竟然有10个0.1米??学生在 “找0.1米”的过程中,“0.1米”的实际大小已经深深地印入了脑海。同时学生对“0.1”是一位小数的计数单位也有了一定的体验和理解.这个过程正是他们自我吸收、内化新知过程,它较好地体现了数形结合的思想,培养了学生思维的深刻性。二是:提问“暗示” 培养对应思维、可逆思维。小数实质上是十进制分数的另一种表示形式。教学中我采用提问来“暗示”来突破这一难点,提问时围绕“0.1米”这个基本的计数单位来设计问题:如在米尺上找出0.3米,说一说 0.3米是几分之几米? 0.3米里面有几个0.1米。这个问题意在以0.1米为基本的计数单位,在直尺上找到0.3米,然后根据小数0.3米找到相应的分数。又如在米尺上找出7个0.1米,想一想用小数表示是多少米?用分数表示又是多少米?此问意在让学生以0.1米为基本的计数单位找出0.7米后,找到与之对应的分数。并同时渗透0.7米里面有7个0.1米。这样一正一反的提问,让学生能意识到小数实质上是十进制的分数。有效培养他们的对应思维、可逆思维。教学实践证明:在教学中运用数形结合,能激发学生学习数学的兴趣,增强学生的求新、求异意识.符合儿童的认知规律,是提升学生思维的必由之路。
返回首页