返回首页
智远网 > 短文 > 教案 > 正文

六年级数学下册教案

2026/02/18教案

此篇文章六年级数学下册教案(精选6篇),由智远网整理,希望能够帮助得到大家。

六年级数学下册教案 篇1

人教版六年级数学下册教案

作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?以下是小编为大家整理的人教版六年级数学下册教案,希望能够帮助到大家。

六年级数学下册教案 篇2

教学目标

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点、难点

1、圆柱体积计算公式的推导过程并能正确应用。

2、借助教具演示,弄清圆柱与长方体的关系。

教具、学具准备

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想

《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

教学过程

一、创设情境,激疑引入

“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报:

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中……

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的`体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形……

生3:说明圆柱和我们学过的圆和长方形有联系

师:请同学们想想圆柱的体积与什么有关?

生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

(3)学生小组汇报交流:

近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

教师根据学生汇报报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式:

长方体的体积 = 底面积 × 高

↓ ↓ ↓

圆柱的体积 = 底面积 × 高

用字母表示计算公式V= sh

设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践

六年级数学下册教案 篇3

教学目标:

1、巩固对储蓄存款的认识,了解教育储蓄、国债利率

2、在自主活动中进一步熟悉掌握存款利息计算方法

3、培养学生认识到存款利国利民

教学重点:

掌握有关存款形式、利息的`计算方法

教学难点:

运用有关知识解决实际问题

教学过程:

一、明确问题

李阿姨要存2万元,供儿子六年后上大学,怎样存款收益最大?

三种理财方式:普通储蓄存款、教育储蓄、购买国债

二、交流汇报有关利率、教育储蓄、国债相关小知识

1、学生汇报自己收集到的相关知识

2、教师释疑

A、收集到的利率为什么与教材上的不同?

B、不同银行存款利率不一样

C、国家利率调整的原因

D、教育储蓄存款存期的计算

三、设计方案

根据利息=本金x利率x存期计算每种方案最后利息

1、学生分组讨论交流,设计不同方案

2、教师巡回指导,选择代表性方案演板

方案一:一年期存6次利息:3880。95元

方案二:二年期存3次利息:4845。9元

方案三:三年期存2次利息:5425。13元

方案四:先存五年期一次,再存一年期一次利息:5492。5元

教育储蓄:五年按六年计算利息:5700元

购买国债:六年利息:6384元

四、讨论:选择方案,比较利弊

根据各种实际情况,灵活选择

五、当堂检测

六、活动总结

七、谈谈本节课的收获与困惑

六年级数学下册教案 篇4

教学目标

1.使学生认识圆柱的底面,侧面和高,掌握圆柱的基本特征,发展学生的空间观念。

2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析、概括的能力。

重点掌握圆柱的基本特征。

难点圆柱的侧面积和它的展开图之间的关系。

教学方法观察法、分析法、归纳法。

学情分析

圆柱是人们在生产、生活中经常遇到的几何形体,学生对于圆柱体并不陌生,只是没有深刻的认识,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。

教学过程

一、创设情景,导入新课

问题:你学过那些立体图形?(长方体、正方体)。

今天老师要教同学们认识一个新的立体图形----圆柱体,简称圆柱。

请同学们拿出你准备的圆柱,老师检查。

老师也收集了一些圆柱的图片,请大家欣赏。

你还见过生活中那些物体的形状是圆柱体。

从一年级我们就知道圆柱体,你认为什么样的图形是圆柱体?说说看。

二、探究新知

1.从圆柱的图片中抽象出圆柱的立体图形。

教师:如果把它们画成立体图形是怎样的?想看吗?

课件演示:从图片中抽象出圆柱。

问:长方体和正方体最多看到几个面?圆柱我们能看到几个面?

2、探究圆柱的基本特征

(1)思考:圆柱的上下两个面是什么样的?叫做什么?

学生观察后得出结论。

教师:小组合作,动手动脑

圆柱两底面的`大小怎样?你用什么方法证明?

画、剪、比等等方法。

(2)比较胖瘦两个圆柱,它们有什么不同?是什么原因?

让学生相互讨论,思考。得出:因为圆柱的底面半径不同,所以在高相等的情况下,半径大的圆柱就胖些。

(3)思考:用手摸圆柱周围的面,你有什么发现?

结论:是一个光滑的曲面。

(4)思考:圆柱两个底面之间的距离叫做什么?在哪里?有几条?

学生先用手比划下圆柱的高,在用彩笔画出圆柱的高。试试看,你能画几条。

白板演示,圆柱的高有无数条,

3、拓展应用,发展新知

在生活中,圆柱的高也有不同的称呼,你知道吗?(白板展示)

硬币是厚,井是深、钢管是长。

三、巩固提高,

1、完成P18的第1题

学生独立完成,老师检查。

2、完成P18的第2题

分析:分别以长方形的那条边为轴旋转而成,底面半径和高分别是多少,引导学生用一张长方形的纸来帮助理解

课题总结

通过今天的学习,你认识到了什么?请用“1、2、3、无数”来总结今天学习的内容,你会吗?说说看。

作业能力练习册第13-14页内容,回家体会理解记忆公式。

板书设计

圆柱体的认识

底面侧面高

2个1个无数条

大小一样的圆曲面

教学反思

圆柱是一种常见的立体图形。在实际生活中,圆柱形状的物体很多,学生对圆柱都有初步的感性认识。在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下基础。教学中,重点理解圆柱的高有无数条,而不仅仅是两个底面圆心的连线这一条。还让学生认识到圆柱的立体图形只有两个面。

六年级数学下册教案 篇5

一、教学内容:

北师大版六年级数学下册第一单元《圆锥的体积》。

二、教学目标:

1、知识技能目标:

通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。

使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、情感态度目标:

使学生在经历中获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

难点:探索圆锥体积的计算方法和推导过程。

四、教具准备:

1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

五、教学过程:

(一)创设情境,导入新课

投影出示圆锥形小麦堆。

师:看,小麦堆得像小山一样,小麦丰收了。张小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?

这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。

【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。

(二)互动新授

1、提出问题。

教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?

根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?

进一步观察、比较、猜测。教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?

学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。

2、实验探究。

(1)教师布置实验任务。

出示教材例2.

① 从准备好的圆柱、圆锥体容器中找出等底、等高的圆柱和圆锥体容器来。

② 用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。

布置实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,做好实验数据的收集整理。(每组发一张实验记录单)

一号圆锥 二号圆锥 三号圆锥

次数

与圆柱是否等底、等高

(2)开展实验探究。

① 找出等底、等高的圆柱和圆锥形容器。

② 实验研究。

教师巡视指导。

学生一边实验,一边收集整理数据,完成实验记录单。

(3)分析数据,作出判断。

① 各组说说各种实验结果。

② 观察分析数据,你发现了什么?

(发现大多数情况下,圆柱能装下三个圆锥的水,也有两次或四次等不同的结果)

③ 进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的水?

(各组互相观察各组的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。)

④ 是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(教师用标准教具装水实验一次)

(4)总结结论

结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

结论2: 圆柱的体积V等于和它等底等高的圆锥体积的3倍。

3、启发引导 推导公式

师:对于同学们得出的结论,你能否用数学公式来表示呢?

生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3 sh表示圆锥的体积。

师:其他同学呢?你们认为这个同学的方法可以吗?

生:可以。

师:那我们就用1/3 sh表示圆锥的体积。

计算公式:V= 1/3 sh

师: (1)这里Sh表示什么?为什么要乘1/3?

(2)要求圆锥体积需要知道哪两个条件?

学生回答,师做总结

4、简单应用 尝试解答

例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?

(学生独立列式计算全班交流)

(三)巩固练习,运用拓展

1、试一试

一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的'体积是多少立方厘米?

2、练一练

计算下面各圆锥的体积:

3、实践性练习

师:请你们将做实验时装在圆柱容器里的水换成沙(或米)试一试,看结论是否一样。然后把它倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。

4、开放性练习

一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)

(四)整理归纳,回顾体验

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?你认为哪组表现最棒?

3、通过这节课的学习,你有什么新的想法?还有什么问题?

【设计意图】通过组织学生对圆锥体积计算方法进行猜测、验证、交流,从而发现圆锥体积的计算方法。整个探究过程充分体现了学生的主体地位,调动了学生的学习积极性。在解决问题的过程中感受到数学知识的价值。

六、板书设计:

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的1/3。

六年级数学下册教案 篇6

教学目标:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

教学重、难点:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

教学准备:

圆柱切割组合模具、小黑板。

教学过程:

一、创设情境,生成问题

1、什么是体积?(物体所占空间的大小叫做物体的体积。)

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题

1、计算圆的'面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

(启发学生思考。)

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

4、推导圆柱体积公式

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:V=Sh

5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题