返回首页
智远网 > 短文 > 教案 > 正文

六年级数学教学设计

2025/10/13教案

此篇文章六年级数学教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

六年级数学教学设计 篇1

教学目标

1.1知识与技能:

1.能根据具体情境,灵活运用圆面积和长方形面积理解圆柱体的表面积。

2.通过想象、动手操作等活动,理解圆柱侧面展开图是一个长方形,加深对圆柱特征的认识,发展空间观念。

3.探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

1.2过程与方法:

讲解圆柱体表面积的过程中,培养学生初步的观察能力以及想象、概括能力。

1.3情感态度与价值观:

引导学生进一步体会立体图形的平面化,感受数学探索活动本身的乐趣,增强学好数学的信心。

教学重难点

2.1教学重点:

让同学们理解圆柱的表面积计算方法。

2.2教学难点:

能够分清侧面积和表面积的区别,合理应用到日常生活中.

教学工具

课件、多媒体设备等

教学过程

一、情境导入

师:同学们,在如常生活中我们经常会遇到一些圆柱体,比如我手里面拿的水杯,你们知道他有哪些东西组成的吗?

生:同学们举手进行回答。

师:这个水杯有哪些面组成呢?

生:上底面、下底面、侧面

师:多媒体出示动画

师:我们可以看出它有三部分组成。

师:现在想一下这三部分都是什么图形?

生:上下底面(圆形),侧面(长方形)

师:把这三个面积加起来,就是我们今天要学习的圆柱的表面积。

生:举手口述连线答案。

师:课件出示答案

圆柱的侧面积=底面周长×高

师:现在,我们来看一些数量关系:

①柱体上下底面面积相等;

②圆柱体侧面长=底面圆周长

③圆柱体侧面宽=圆柱体高

二、探究新知

(一)、侧面积

师:我们现在来看看圆柱体的侧面积是怎样计算的。

学生:举手发言

在回答问题的过程中教师要用鼓励性的语言激发学生探求知识的能力。

师:多媒体出示答案

圆柱侧面积=长×宽=底面圆周长x高

师:现在我们看看在实际应用中是如何计算的。(多媒体出示问题)

1、已知圆柱体的底面圆半径为50px,高为125px,求一下这个圆柱体的侧面及时多少?

生:举手回答

师:多媒体出示答案

解:周长=2πr=2×2π=4π

侧面积=周长×高=4π×5=20πcm?

师:同学们要认真观察书写步骤。

(二)、表面积

师:现在我们来看看圆柱体的表面积是怎么计算的。

生:举手回答问题

师:多媒体出示答案

圆柱表面积=侧面积+底面积=侧面积+上底面积+下底面积

师:下面我们再来做一个练习吧!

2、现在要制作一个底面半径为2dm,高为10dm的圆柱形铁桶,需要多少铁皮?

师:同学们可以先算出侧面积和底面积,然后再算表面积。

生:通过同学们互相竞争,增强了同学们学习数学的兴趣。

解析:

解:周长=2πr =2×2π =4π

侧面积=周长×高=4π×10=40π

底面圆面积=πr?=4π

圆柱表面积=侧面积+2底面积=40π+2x4π=40π+8π =48π

答:需要48πdm?铁皮

三、巩固练习

师:现在请大家看屏幕上面的这道题,能不能分小组解决问题。(课件出示题目)

1、天气冷了,农村学生就要生火了,烟囱使用铁皮做的,一节烟囱长为20xxpx,烟囱的半径为100px,求制作这样的烟囱一节需要多少铁皮。

师:要找出题目的关键,理清思路,细心解题。

生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。

解析:

解:周长=2πr=2×4π=8π

表面积=侧面积=8π×10=80π

答:制作这样的烟囱一节需要80πcm?铁皮

师:接下来,再看一个题目,这次也要分组进行,看看哪个组做得又快又好。(课件出示题目)

2.现在要砌一个圆柱形的水窖,预计水窖深3米,水窖底的底面直径为1.5米,现在求一下整个水窖需要抹去多少平方米的混凝土。

生:各小组在竞争中享受获取知识的乐趣。

解析:周长=πd=1.5π

表面积=侧面积+下底面积=1.5π×3+2.25π=6.75π

答:整个水窖需要抹去6.75π平方米的混凝土

师:现在大家独立完成下面的题目(出示题目)。

3、已知一个圆柱体的表面积是15700px?,其中圆柱体的底面半径50px,求圆柱体的高。

解:设圆柱体的高为h

根据:表面积=侧面积+2底面积

628=2×2πh+2×π2?

628=4πh+8π

628=4×3.14h+8×3.14

20=4h+8

h=4

答:圆柱体的高4米

7作业布置

师:在作业本上面完成下面的2个题目。

1、一个圆柱体,如果底面半径为5,圆柱体高为10,那么,求一下圆柱体的侧面积和表面积?

解:周长=2πr=2×5π=10π

侧面积=周长×高=10π×10=100π

底面积=πr?=25π

表面积=侧面积+2底面积=100π+2×25π=150π

2、现在要给一个圆柱形的纸质品涂上颜色,现在知道该艺术品的底面圆半径为50px,圆柱体高为125px,请同学们求出圆柱体的表面积。

解:周长=2πr=2×2π=4π

侧面积=周长×高=4π×5=20π

底面积=πr?=4π

表面积=侧面积+2底面积=20π+4π=24π

课后小结

这堂课大家通过学习圆柱体的表面积,使同学们能用学过的知识去解决一些实际的图形面积问题。主要为了让同学们能够建立丰富的想象,把立体图形转化为平面图形的能力,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识,并通过练习提高学生的想象能力和抽象思维能力。

板书

第2节圆柱(圆柱的表面积)

教学目标

圆柱的体积(教材第25页例5)。

探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

教学重难点

1.掌握圆柱的体积公式,并能运用其解决简单实际问题。

2.理解圆柱体积公式的推导过程。

教学工具

推导圆柱体积公式的圆柱教具一套。

教学过程

【复习导入】

1.口头回答。

(1)什么叫体积?怎样求长方体的体积?

(2)怎样求圆的面积?圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

2.引入新课。

我们在推导圆的'面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?

教师板书:圆柱的体积(1)。

【新课讲授】

1.教学圆柱体积公式的推导。

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:

①圆柱切开后可以拼成一个什么立体图形?

学生:近似的长方体。

②通过刚才的实验你发现了什么?

教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?

学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。

(4)学生根据圆的面积公式推导过程,进行猜想:

①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

(5)启发学生说出:通过以上的观察,发现了什么?

①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的体积怎样计算?

②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。

2.教学补充例题。

(1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?

(2)指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?

学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。

(3)出示下面几种解答方案,让学生判断哪个是正确的。

①50×2.1=105(cm3)答:它的体积是2625px3。

②2.1m=5250px 50×210=10500(cm3)

答:它的体积是262500px3。

③1250px2=0.5m2 0.5×2.1=1.05(m3)

答:它的体积是1.05m3。

④1250px2=0.005m2

0.005×2.1=0.0105(m3)

答:它的体积是0.0105m3。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。

(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?

教师板书:V=πr2h。

【课堂作业】

教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

答案:“做一做”:1. 6750(cm3)

2. 7.85m3

第1题:(从左往右)

3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

【课堂小结】

通过这节课的学习,你有什么收获?你有什么感受?

【课后作业】

完成练习册中本课时的练习。

课后小结

1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。

2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。

3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。

课后习题

教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

答案:“做一做”:1. 6750(cm3)

2. 7.85m3

第1题:(从左往右)

3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

六年级数学教学设计 篇2

教学内容:

《观察的范围》北师大版小学数学六年级上册第六单元第二课时第80--81页。

教材分析:

《观察的范围》是北师大版六年级上册第六单元第二课时的内容,属于空间与图形领域。本课从学生熟悉而感兴趣的生活背景出发,通过猴子看桃、行驶的汽车看到的大楼范围、路灯下的影子等情境,让学生在观察、操作、模拟等探索活动中体会到将眼睛、视线与观察范围抽象为点、线、区域这一变化过程。让学生利用所学知识解释生活中的一些现象,发展学生的空间观念。

学情分析:

这一内容学生在四年级下册第四单元《观察物体》中已经初步接触。学生能辨认从高处、远处不同观察点拍摄到的图片及其先后顺序;通过实际观察,使学生体会到同一景物在不同的位置,看到的画面不同;能辨认从不同的位置拍摄到的图片及其先后顺序。

教学目标:

知识与技能:

(1)给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的'过程。

(2)感受观察范围随观察点、观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。

过程与方法:从熟悉的、有趣的生活背景中通过观察、操作、想象等活动,发展学生的空间观念。

情感、态度与价值观:体会数学与现实生活的联系,增强学习数学的兴趣以及与他人合作交流的意识。

教学重点:

经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念。

教学难点:

运用所学知识解释日常生活中的一些现象。

教具准备:

多媒体课件、尺子

教学过程:

一:视频导入,揭示课题。

1、播放麦当劳广告。

学生谈谈自己的想法。

2、看来观察的范围是会变化的,这节课我们就来研究《观察的范围》。(板书课题)

二:自主探究,发现规律。

1、创设情境,引入问题。

(课件出示)

师:小猴在墙外能看见地上的桃子吗?怎么办?

小猴爬上A点,看到墙内地上最近的点是哪里?

同学们,你们能帮它想个好办法吗?

2、自主操作,初步探究。

(1)画一画,找一找。

(2)汇报,说说你是怎么找到A点的。

(3)演示,注意眼睛、墙的右上角。

(4)说一说:小猴在A点看到的范围。

(5)明确:根据学生的回答,明确视线、观察点、阻碍点等概念并板书,得出确定观察范围的方法。

板书:观察点,障碍点,视线,观察的范围。

3、自主操作,深入探究。

小猴爬到B点、C点,看到墙内最近的点是哪里?它能看到墙内哪些地方呢?

学生在书上试一试,画一画,再汇报交流。

4、交流讨论

比较三次的结果,有什么发现?

小结:爬得越高,看到的范围越大。说明观察点越高,观察的范围越大,观察点越低,观察的范围越小。

板书:高、低,大、小。

5、联系古诗说一说

这好像和我们学过的一首古诗有关系。

联系古诗,学生背诵,从数学角度谈谈自己的理解。

三、应用知识,解决问题。

1、变化的楼房(课件出示)。

客车在平坦的大路上行驶,前方有两座建筑物。

(1)客车行驶到位置1时,司机能够看到建筑物B的哪一部分?

(2)到达位置2时能看见建筑物B吗?穿过建筑物A呢?

(3)司机的观察范围是如何变化的?

(4)你有什么发现?

障碍点不动时,观察点远,观察的范围大;观察点近,观察的范围小。

2、画影子。试一试1(课件出示)

老师和学生共同研究影子的形成,并让学生画出路灯下几个杆子的影子。

从中你发现了什么?

同样高的杆子离路灯越近,它的影子就越短

观察点不动,障碍点越远,观察的范围越大;障碍点越近,观察的范围越小。

小结:观察点与障碍点的相对位置发生变化,观察的范围也会变化。板书:位置

3、猫捉老鼠。一天,一只猫追一只老鼠,迎面遇到了一堵残墙,这只聪明的小老鼠就躲在这堵残墙的后面。

(1)请你在图2中画出小老鼠可以活动的区域。

(2)如果你是这只猫,想看到更大的范围,你想怎么办?

预设:

a、有障碍物的情况下,猫向后退;

b、可以绕过障碍物或跳到墙上。

4、拓展思维:解释日食现象,月食现象。

生活中,还有许多与观察范围有关的现象。看日食图片

1、日食。

你们明白日食是怎么形成的了吗?

2、月食。

月食现象又是怎么回事呢?

请你用数学知识解释。

四、全课总结。

这节课你们学到了哪些知识?说一说你的收获。

我们是用哪些方法得到的呢?

五、课后作业。

完成实践活动。

板书设计:

观察的范围

视线

观察点

六年级数学教学设计 篇3

教学目标:

1.通过复习平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。

2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。

3.理解轴对称图形的特征,会判断一些特殊图形是否是轴对称图形,会画轴对称图形的对称轴

4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。

教学准备:教师准备教学光盘

教学过程:

一、整理与反思

1.提问:你知道变换图形的位置的方法有哪些?

引导学生说出变换图形的位置的方法主要是平移和旋转。

火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。

2.怎样能不改变图形的形状而只改变图形的大小?

引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。

3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?

区别:平移和旋转不改变图形的大小,只改变图形的位置。而放大和缩小不改变图形的形状,只改变图形的大小。

联系:两种方法都不改变图形的形状。

4提问:什么是轴对称图形?我们学过的图形中哪些图形是轴对称图形?它们分别有多少条对称轴?

引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。(教师出示相应的图片)

二、指导学生完成练习与实践。

1.完成练习与实践的第1题。

先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。接着让学生画出轴对称图形的所有对称轴。

2.完成练习与实践的第2题。

可以先让学生按要求依次进行操作,再通过交流帮助学生进一步明确相关的操作方法。

其中画出一个图形的另一半使它成为一个轴对称图形,以及画出一个图形旋转或平移后的图形,都可以先找出一些重要的点或线段,然后确定这些点或线段在另一半图形中的.位置,或平移旋转后的位置,最后连一连。

要使学生认识到:决定平移后图形位置的关键是平移的方向和平移的距离。决定旋转后图形位置的关键是旋转的方向和旋转的角度。

把一个图形按指定的比例放大,可以先在原图中找到平行四边形的底和高,算出放大后的底和高,然后画出放大后的这些线段,最后连一连。

要让学生思考按怎样的比是把原图形放大,按怎样的比是把原图形缩小。

3.完成练习与实践的第3题。

可以先让学生讨论确定圆的位置,需要把圆向右移动几格?圆心应画在哪里?画出的圆的大小应与原来的圆大小相等。在此基础上依次解决书上的几个问题。

4.完成练习与实践第4题。

可以提醒学生以直角三角形的两条直角边作标准,先数一数每条直角边各有几格长,再算一算按指定的比例缩小后又应该是几格长。在此基础上,让学生动手画一画,并进行比较。求出新图形的面积与原来图形面积的比。

5.完成练习与实践的第5题。

可以先让学生观察拼成的两个大正方形图案,说说它们分别是由哪两种瓷砖拼成的?在此基础上,鼓励学生各自按要求设计图案。要提醒学生:第一,每次只能选择两种瓷砖;第二,每种瓷砖都可以适当旋转。

展示学生设计的图案,及时组织学生互相评价。

三、全课小结

通过复习,你对图形变换方面的知识又有了哪些新的认识?

四、布置作业

完成《补充习题》的相关练习。

六年级数学教学设计 篇4

学习目标:

1.通过丰富多彩的学习情境,使学生感悟到“折扣”在日常生活中的广泛应用,明确折扣应用题的数量关系和“求一个数的百分之几是多少的应用题”的数量关系相同,并能正确地解答这一类应用题;

2.使学生深刻体会到数学与现实生活的联系,学会从数学的角度出发考虑问题,并能正确地应用所学知识解决实际问题,培养他们良好的数学素养;

3.通过小组合作,培养学生的群体意识,促进他们创造性地解决问题的能力,培养他们的创新精神和学习数学的积极情感。

学习重点:

使学生能正确地按折扣和成数进行计算,并能领会所学知识与现实生活的联系以及其在日常生活中的实用性。

学习难点:

使学生能够在教学情境之中创造性地应用所学知识解决实际问题,培养他们良好的数学应用意识。

教学设想:

《折扣》是《分数(百分数)乘法应用题》的第二教时,是在学生学习了把折扣、成数改写成百分数,以及“求一个数的百分之几是多少”的应用题的基础上进行教学的。

本节课的教学设计力图体现“尊重学生,体现创新”和“关注生活,注重实效”的教学理念。在新课程的理念下使用旧教材,一方面,教材本身固有的学习要求还是应当达到的,另一方面,要使学生真正成为学习的主体,使他们能够自始至终都兴趣盎然地参与学习活动,并能学有所思、学有所得,教师对原有教材又不能不进行一定的开拓与创新。为此,我着重做好以下三点:

1.巧设情境,激发学习兴趣,凸现学生的主体地位。

2.联系生活,加强应用,培养学生良好的数学素养。

3.自主创新,改编教材,谋求师生的共同发展。

教学过程预设:

一.创设情境,激发兴趣。

1.出示雅典奥运会吉祥物“雅典娜”和“费沃斯”,说说它们的名称,并猜测价格。(课件展示)

二.导入新课,感悟新知。

1.出示两家商店中这种吉祥物的不同价格,说说你会上哪一家店购买。

甲商店:120元

乙商店:110元

2.出示两家商店不同的促销方式:

甲商店:底价抢购,八折起

乙商店:六一特价,一律九折

3.说一说:“八折”和“九折”各表示什么意思?现在你觉得上哪一家店购买比较合算了?为什么?

4.这种吉祥物在这两家店的价格究竟各是多少,我们该怎样计算?

[指导学生列式计算:甲商店

120×80%=96(元)乙商店

110×90%=99(元)]

5.小结:刚才这道题的的实质,就是求商品原价的百分之几是多少。

6.试一试:

(1)某家具商店将一种原价320元的床垫八五折出售,这种床垫的现

价是多少元?

(2)一种电视机原价每台2600元,“五一”期间以9.5折出售。这种电视机的促销价是多少元?

三.简单应用,加深体验。

情境展示:某儿童用品商店在儿童节期间对部分商品进行特价酬宾:

大肚熊:原价120元,打八折;

天文望远镜:原价528元,打七五折;

笔袋:原价35元,打九折;

电动汽车:原价156元,打六折;

玩具机器人:原价220元,打四折;

水杯:原价20元,打九五折;

故事书:原价120元,打八折;

篮球:原价78元,六五折。

问:如果给你100元钱进这家商店购物,你将如何合理使用这100元钱?

四:合作探究,解决问题。

一种饮料,大瓶装每瓶1200毫升,10元一瓶;听装每听200毫升,2元一听。

现有三家商店出售这种饮料,并推出了不同的促销方式:

甲商店:买一大瓶,送一听;

乙商店:一律九折;

丙商店:满30元八折优惠。

问:1.你喜欢上哪一家商店购买?说说你的想法。

2.你们班共有多少同学?如果每位同学配备200毫升饮料,共需多少饮料?

3.这么多饮料,上哪一家店购买可以使所花费的钱最省?请通过小组合作制订一个购买方案。

(思考:购买方案的制订应视班级的具体情况而定。这道题具有比较开阔的思维空间,对学生而言是一种挑战。要尽可能使学生感悟以下两点:1,可以在两家或两家以上商店组合购买;2,用同样多的钱买到更多的饮料。这样这道题就具备了一定的创新意义)

五.总结收获,课后延伸。

1.说说学了这节课你有什么收获。(结合学生回答小结本课内容)

2.出示课后延伸题:

(1)河汉村有个种粮大户,前年收稻谷26000千克,去年比前年增产了一成五。这个种粮大户去年比前年要多收多少稻谷?

(2)安华镇某大型袜厂2003年的产值达到了560万元,打算2004年在此基础上增值二成。该袜厂2004年比2003年增值多少万元?

说说这两题涉及到了什么内容,回家后先独立完成,再请家长进行检查。

板书设计:

折扣应用题

甲商店:120元

乙商店:110元

底价抢购,八折起

中秋特价,一律九折

(表示现价是原价的80%)

(表示现价是原价的90%)

120×80%=96(元)

110×90%=99(元)

教学反思

这堂课是我曾经开设过的一堂校级公开课,课后学生与听课教师的反响相当好。我个人认为,这堂课在以下几方面是处理得比较成功的:

一、重视学生在学习过程中的参与程度,关注他们的处境和感受。

兴趣永远是最好的老师,本节课中我针对小学生的年龄特征,以他们熟悉的“购物情境”导入学习,把简单、枯燥的学习理性知识的过程变成学生自主探究、发现问题并解决问题的动态过程,促使学生思维活跃地参与整个学习过程,也使课堂充满了生机和活力。

二、注意到了数学知识与现实生活之间的联系,关注学生的生活经验。

“实用性”是这节课的一个显着特点,无论是“折扣”还是“成数”,都是现实生活中的客观存在,也正因为此我们才有学习和探讨的必要。因此,我结合班级和上课时的.实际情况组织教材,尽可能使学习内容贴近学生的生活,并通过课后延伸等方式,启发学生将所学内容在现实生活中进行充分的体验和感悟,为学生提供一个更为深广的学习空间。

三、大胆改编教材,使课堂教学更具艺术性。

在原教材中,这一课时的学习内容包括“折扣”和“成数”两部分,我在教学中则选择了小学生比较感兴趣的“折扣”作为主要的学习内容。至于“成数”相对而言离学生的日常生活有一定的距离,但却是学生家长所熟悉的,因此我把这一内容作为这堂课的课后延伸,让学生在回家以后通过自学以及与家长的交流和探讨自主掌握。从学生的反馈情况看,他们完全能够做到这一点。

当然,这堂课也有不足之处,对一些同学而言,这节课的难度较大,尤其是“合作探究”部分。虽然有小组成员间的互助互学,还是有部分同学不能按时完成学习任务。用新课程的理念教学旧教材,对于那些习惯了传统教学的学生而言也是一种挑战,这是值得教师重新思考的。

六年级数学教学设计 篇5

1面的旋转

1、教学目标

1、知识与技能:通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥各部分的名称。

2、过程与方法:经历由面旋转成圆柱、圆锥的活动,体会面和体之间的关系。

3、情感态度与价值观:通过观察想象,动手操作等活动,在参与中积累活动经验,丰富对现实空间的认识,提高空间想象能力,发展空间观念。

2、学情分析

学生已经认识了长方形、正方形、平行四边形、三角形、梯形、圆、扇形,并充分了解了长方体、正方体这两种完全由平面围成的立体图形,对于圆柱和圆锥,学生已经能够直观辨认。本节课则是将学生的视角由平面的立体图形引向含有曲面的立体图形,由平面图形经过旋转形成几何体是本节课的一个难点,这不仅是对面和体关系的学习,也是发展空间观念的重要途径,所以教学时将重心前移,把“面动成体”这一环节作为重点,给学生的思维以更广阔的空间,从而实现学习方式由“整体辨认”到“局部特征刻画”的转变。

3、重点难点

教学重点:理解并掌握圆柱、圆锥的基本特征和各部分名称。

教学难点:体会“点、线、面、体”之间的关系。

4、教学过程

4.1 第一学时

4.1.1教学活动

活动1【导入】一、创设情境,设疑激趣。

(播放音乐喷泉视频)教师引导学生观察音乐喷泉,发现水珠的运动形成线。

活动2【活动】二、自主猜想,合作探究。

(一)探究点、线、面、体之间的关系。

1、体会点动成线

课件演示:

水珠的运动形成线

2、体会线动成面、面动成体。

教师引导学生拿一支笔和长方形纸进行线动面动的操作,领会线动成面,面动成体。

预设:线动:平移——长方形;旋转——圆形;斜移——平行四边形;波浪面。

面动:平移——长方体;旋转——圆柱体

3、结合生活现象体会点线面体之间的联系。

课件出示“流星、雨刷、转门”图,引导学生说出点动成线、线动成面、面动成体。

师小结:刚才我们通过联系生活中的.现象,知道了——点动成线,线动成面,面动成体。(板书点线面体)那么面如果旋转又能形成什么样的体呢?今天我们一起学习面的旋转。(板书课题:面的旋转)

(二)探究“面的旋转”

1、小组活动。

活动要求:

1、同桌合作:选取平面图形和小棒制作小旗,然后快速转动小旗。

2、组内交流:小旗以哪条边为轴,快速转动后形成什么立体图形。

学生活动。

(教师巡视:关注并辅导学生们的动手实践情况)

2、学生汇报。

(1)圆柱的形成

a、以长方形的长边为轴、短边为轴、对称轴为轴快速旋转,形成一个圆柱体。

b、三个学生一起转动,观察有什么共同之处?

预设:以不同的边为轴进行旋转,都得到一个圆柱体。圆柱体的样子不相同。

c、引导学生发现以长方形一条边为轴进行旋转,其他几条边旋转后形成的图形。

出示转动器转动小旗。

学生汇报。

(预设:两条短边旋转变成圆形,另一长边旋转形成一个弯曲的面。)

d、出示几何画板演示圆柱形成过程。

认识曲面。(板书:曲面)

(2)圆锥的形成

a、分别以直角三角形的一条直角边、以另一条直角边、以斜边为轴,快速旋转形成圆锥体。

(出示两个倒扣的圆锥实物)

b、引导发现以一条直角边为轴进行旋转,另外的两条边旋转后形成的图形。

学生想象回答

c、几何画板看圆锥形成过程。(课件出示)

3、练一练

(1)学生先想像每个图形旋转后的立体图形。结合立体图形想象由什么样的平面图形旋转得到的。

(2)整体出示立体图形,学生判断。

(课件抽象出圆柱圆锥)

师小结:同学们,刚才我们通过动手转一转、动脑想一想,探究出一个平面图形绕着轴进行旋转,就能得到一个立体图形。接下来我们要探究这些立体图形当中——圆柱和圆锥的面的特点。(板书:圆柱圆锥)

(三)探究圆柱和圆锥面的特点。

1、举生活中的例子。

生活中有很多物体的形状都是圆柱和圆锥,你知道哪些物体的形状是圆柱圆锥?(生举例)

2、探究面的特点。

学生互动交流。

3、学生汇报。

圆柱的特征:两个底面、一个侧面。底面是由两个大小完全相等的圆组成。(电子白板演示上下两个底面完全相等)侧面是一个弯曲的面。

圆锥的特征:由一个底面(圆)、一个侧面(曲面)组成。

4、圆柱圆锥面的区别。

圆柱和圆锥的面有哪些共同点?又有哪些区别呢?

学生汇报交流。

师小结:刚才我们结合生活中的物体,探究出圆柱圆锥面的特点。

活动3【活动】三、课堂总结,微视频深化理解。

1、谈收获。

师:同学们,说说今天这节课你有什么收获?

学生总结收获,说体会。

2、微课:面的旋转。

教师引导学生观看微课:面的旋转。

3、结束语。

教师引导学生继续学习。

六年级数学教学设计 篇6

教学内容:

变化的量

教材简析:

“变化的量”是学习正比例与反比例的起始课。教材通过系列情境,结合日常生活中的问题,让学生体会变量和变量之间相互依存的关系,并尝试对这些关系进行大致的描述,从而拓宽学生理解正比例、反比例的背景。

教学目标:

知识技能:结合具体的数学情境认识“变化的量”,并通过描述活动,了解其中一个变量是怎样随着另一个变量而变化的。

数学思考:通过举例与交流活动,找到生活中互相依存的变量,描述日常生活中一个变量是怎样随着另一个变量的变化而变化的。

问题解决:能从图表中获取信息,正确表述量的变化关系;或用数学关系式表示两个变量之间的关系。

情感态度:知道列表与画图都是表示变量关系的常用的方法,积累表征变量的数学活动经验;从大量生活情境中获取数学学习的兴趣和动力。

教学过程:

一、情境引入

1、出示一则新闻信息:xxxx年11月14日零时,国家发改委发布了最新的国内成品油最高零售限价,受国际油价持续大跌的影响,国内也出现了罕见的油价“八连跌”现象。

2、交流:你知道油价持续下跌会产生怎样的影响吗?

3、思考:从这些影响中你发现了什么?(生活中存在着大量相互依存的变量)

4、揭示课题:今天我们就来研究像这样相互依存的变化的量。(板书课题)

二、探究新知

1、发现生活中特定时期相互依存的变化的量

出示妙想6岁前的体重变化的文字信息。

(1)提问:你有什么方式能将这些信息更加简洁明了的表示出来吗?

(2)观察:出示淘气和笑笑呈现信息的`表格和图,口答哪些量在发生变化?再说说用表格和图呈现两个变量分别有什么优点。

(3)交流:妙想6岁前的体重是如何随年龄增长而变化的?

(4)讨论:在成长的过程中,妙想的体重是不是一直这样变化的呢?你从中又发现了什么?

(5)反馈:练一练第1题,说说圆柱的体积和高之间的变化关系。

2、了解生活中“周期性”重复出现的相互依存的变化的量

(1)提问:出示情境图2,说一说,图中有哪两个变量?这两个量是怎样变化的?

(2)交流:学生独立看图,并口答教材中的三个问题。

(3)反馈:完成练一练第2题。

(4)讨论:与上一题比较,这里相互依存的变化量变化规律有什么异同点?

3、感知生活中用数学关系式表示的相互依存的变化的量

出示练一练第3题:蟋蟀叫的次数与气温之间的关系。

(1)学生独立读题,说说题中有哪两个变化的量,这两个量之间有怎样的变化关系、你能尝试用式子表示这个近似关系?

(2)引导比较:这里两个量之间的关系与前面的又有什么不同呢?

(3)反馈练习:将练一练第1题体积与高之间的关系用数量关系式表示出来。

三、综合应用

1、出示两组生活中用数学关系式表示的相互依存的变化的量,学生说一说有哪两个变量?是怎样变化的?你能用数量关系式表示吗?

2、你还能找出生活中一个量随着另一个量的变化而变化的例子吗?

四、全课小结

小结本节课所学知识,铺垫下一课时。

板书设计:

变化的量变化形式

年龄体重特定区域

时间体温周期性

nt数量关系