《圆锥的体积》教学设计
此篇文章《圆锥的体积》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《圆锥的体积》教学设计 篇1
《圆锥的体积》教学设计
作为一位不辞辛劳的人民教师,总不可避免地需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写呢?以下是小编帮大家整理的《圆锥的体积》教学设计,欢迎阅读,希望大家能够喜欢。
《圆锥的体积》教学设计 篇2
一、教学内容:义务教育课程标准实验教科书(北师大版)六年级下册第11~13页
二、教学目标:
1、知识技能目标:
◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;
◆使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
◆提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:
◆使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:
1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:
(一)创设情境,导入新课
1、故事情景引发猜想
电脑呈现出动画情境(伴图配音)。
炎热的夏天,小明和小强去“广场超市”的 冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。于是,他们两个为买哪一种形状的冰淇淋争执起来。同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?(图中圆柱形和圆锥形的雪糕是等底等高的。)
(学生回答自己的猜想,有说买圆锥形的,有说买圆柱形的)
教师:学完今天的内容后,同学们就能正确解决了!
2、圆锥实物揭示课题
①教师出示一筒 沙,师:将这筒沙倒在桌上,会变成什么形状?
(学生猜想后教师演示)
②师:在这堂课上,你希望学到哪些知识呢?
(生自主回答,确立学习目标)
③揭题:圆锥的体积
师:好,我们一起努力吧!
(二)自主探索,合作交流
1、直观引入直觉猜想
(1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。
(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?
①教师鼓励学生大胆猜想。(生说可能的情况)
②师:你们是怎样理解“相应的”一词的?说说你的看法。
生说后,师总结:“相应的”,即圆锥与圆柱是等底等高的。(用实物演示给生看)
2、实验探索发现规律
(1)小组讨论填写材料单,有顺序地领取材料
学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个)
(2)小组合作实验,并填写实验报告单。
实验方法
发现结果
第一次实验
第二次实验
第三次实验
结论:
(3)汇报结果,实物投影展示实验报告单。
(4)组际交流,得出结论:
结论1:圆锥的体积v等于和它等底等高圆柱体积的三分之一。
结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。
结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。
结论4:圆柱的体积正好是圆锥体积的3倍。
结论5:圆柱的体积是等底等高的圆锥体积的3倍。
……
师:同学们实验的结论各不相同,到底哪组的结论对呢?
(各小组纷纷叙述自己小组的实验过程、结论;说明自己小组的准确性,学生的思维处于高度集中状态)。
(5)参与处理信息。
围绕三分之一或3倍关系的情况讨论:
师:我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说他们是怎样通过实验得出这一结论的?
(请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的)
师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的`看法。
(生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。
师:总结以上各个小组的看法,我们可以得出什么样的结论?
生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。
生2:圆柱的体积是等底等高的圆锥体积的3倍。
生3:我认为第一种说法较合理,强调了圆锥体积的求法。
……
师总结并板书:
圆锥的体积等于和它等底等高的圆柱体积的1/3。
3、启发引导推导公式
师:对于同学们得出的结论,你能否用数学公式来表示呢?
生:因为圆柱的体积计算公式v=sh;所以我们可以用1/3 sh表示圆锥的体积。
师:其他同学呢?你们认为这个同学的方法可以吗?
生:可以。
师:那我们就用1/3 sh表示圆锥的体积。
计算公式:v= 1/3 sh
>师:(1)这里sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
生回答,师做总结
4、简单应用尝试解答
例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(生独立列式计算全班交流)
(三)巩固练习,运用拓展
1、试一试
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?
2、练一练
计算下面各圆锥的体积:
3、实践性练习
师:请你们将做实验时装在圆柱容器里的沙(或米)倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。
4、开放性练习
一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)
(四)整理归纳,回顾体验
1、上了这些课,你有什么收获?(互说中系统整理)
2、用什么方法获取的?你认为哪组表现最棒?
3、通过这节课的学习,你有什么新的想法?还有什么问题?
(五)问题解决。(电脑呈现出动画情境)
小明和小强到底买哪种形状的冰淇淋更合算呢?
师:谁能帮他们解决这个问题呢?
(学生说出买圆柱形的冰淇淋更合算的理由。)
六、板书设计:
圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的1/3。
七、设计反思:
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:
(1)密切数学与生活的联系,富有儿童情趣。
从学生熟悉的生活故事引入,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。最后的问题解决回归于生活,实现了丛生活中来,又服务于生活的指导思想。
(2)在经历“错误”之中历炼思维
在平时的课堂教学中,学生往往会出现很多错误性的东西,比如:错误的认识、错误的过程、错误的结论等。很多老师不是“遇错即纠”,就是“遇错即批”,其实大可不必,因为错误之中也有可以充分利用的宝贵资源。“授人以鱼,不如授之以渔”。学生学习数学不仅要学会题的解法,更要懂得解法的来龙去脉。我们要利用“错误”这一资源让学生思考问题,经历碰壁,最终找到解决问题的方法,把思考的实际过程展现给学生,让学生经历思维的碰撞,真正关注学习的过程,帮助他们理解和掌握数学思维和方法。
为了使学生对“等底等高”这一条件能牢固掌握并深刻理解,在分发学具时,我有意将等底等高、等底不等高和等高不等底的三组不同的圆锥形和圆柱形容器分发给各小组,学生通过动手操作后,得出的结论大不相同,在学生汇报的过程中,意见发生了重大分歧,不同结论的各小组都坚持自己的结论准确无误,认知出现了激烈的冲突,此时,我并没有给出评判,而是要求学生认真去观察、比较、发现各自小组的圆锥和圆柱有什么相同或不同的地方,通过观察、比较,最后终于得出只有在等底等高的条件下圆锥的体积才等于圆柱体积的三分之一。这样做既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是利用“错误”这一资源产生的效果
(3)学习过程中揭示了一般科学的研究方法:
提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、思想和方法,更发展了学生的反思意识、小组自我评价意识。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,学生体验到了成功的快乐。
纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出。
《圆锥的体积》教学设计 篇3
教学目的与要求:
(1)掌握锥体的等积定值,锥体的体积公式。
(2) 理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。
教学重点与难点:
公式的推导过程,即"割补法"求体积。
教学方法:
发现式教学 教具:
三棱柱模型、多媒体
1、复习祖暅 原理及柱体的体积公式。
2、等底面积等高的任意两个锥体的体积。
(类比于柱体体积公式的得出)。首先研究等底面积等高的任意两个锥体体积之间的关系。
取任意两个锥体,设它们的底面积都是S,高都是h。
(创造祖暅 原理的条件)把这两个锥体放在同一个平面α上。这时它们的顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:
∵S1/S=h12/h2,,S2/S=h12/h2,
∴S1/S=S2/S,S1=S2。
根据祖日恒 原理,这两个锥体的`体积相等,由此得到下面的定理:
定理,等底面积等高的两个锥体的体积相等。
3、三棱锥的体积公式
为研究三棱锥的体积,可类比于初中三角形面积的求法。
在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)
而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。
能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?
[可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。
也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?
(图形没有打印)
[引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。
三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。三棱锥2、3的底ΔB'CB'、ΔC'B'C的面积相等,高也相等。(顶点都是A')。
∴V1=V2=V3=1/3V三棱柱 ∵V棱柱=Sh ∴V三棱柱=1/3Sh
最后,因为和一个三棱锥等底面积等高的任何锥体都和这个三棱锥的体积相等,所以得到下面的定理。
定理:如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:V锥体=1/3Sh。
推论:如果圆锥的底面半径是r,高是h,那么它的体积是: V圆锥=1/3πr2h
4、锥体体积公式的应用。
练习1:正四棱锥底面积是S,侧面积为Q,则其体积为: 。
练习2:圆锥的全面积为14πcm2,侧面展开图的中心角为60°,则其体积为 。
练习3:边长为a的正方形,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这个扇形围成一个圆锥筒,求它的体积。
5、课堂小结:1°割补法求三棱锥的思想。
2°锥体的体积公式。
《圆锥的体积》教学设计 篇4
教学目标:
1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点: 通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
教学过程:
一、复习导入
师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么? (指名学生回答)
2、圆锥有什么特征?
同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)
二、探究新知
课件出示等底等高的圆柱和圆锥
1、引导学生观察:这个圆柱和圆锥有什么相同的地方?
学生回答:它们是等底等高的。
猜想:
(1)、你认为圆锥体积的大小与它的.什么有关?
(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?
2、学生动手操作实验
(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?
(2)、通过实验,你发现了什么?
小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察, 用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)
师:用字母应该怎样表示? (V=1/3sh)
师:在这个公式里你觉得哪里最应该注意?
三、教学试一试
一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?
四、巩固练习
1、计算圆锥的体积
2、判一判
3、算一算
4、拓展延伸
五、总结
通过这节课的学习,你有什么收获呢?
六、板书:
圆锥的体积=圆柱的体积×1/3
圆锥的体积=底面积×高×1/3
用字母表示V=1/3sh
《圆锥的体积》教学设计 篇5
教学内容:
九年义务教育六年制小学数学第十二册第48-50页。
教学目的:
1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。
2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。
3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。
教学重点:
圆锥的体积计算。
教学难点:
圆锥的体积公式推导。
教学关键:
圆锥的体积是与它等底等高的圆柱体积的二分之一。
教具准备:
投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。
学具准备:
等底等高的圆柱和圆锥空心实物各一个
教学过程:
一、复习
1.圆柱的体积公式是什么?
2.底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?
[说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。
板书:圆锥的体积
[说明:设疑激趣,激发学生探求新知识的欲望。l
二、新课教学
师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)
投影出示下图:
师:圆锥的底面是什么形状?
生:圆锥的底面是圆形的。
师:对。什么是圆锥的高呢?
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师演示:将刚才出示的圆锥图上的高往外移,标上字母h,如图所示:
师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?
生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。
师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)
师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)
师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?
投影出示下列图形:
生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。
师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?
生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。
师:说得有道理。你能不能将这个圆锥摆正。
(一名学生到前面旋转投影片,将圆锥图形一一摆正)
师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。
[说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生加深认识;最后,用一组判断题要学生鉴别哪些是圆锥,哪些不是圆锥,符合学生的认知规律,从而达到知识的强化目的。]
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)
生:它们的底面是相等的。
师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)
生:它们的高也是相等的。
师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1.实验器材中,圆锥的底面和圆柱的底面有什么关系?官们的高有什么关系?
2.圆锥的体积和同它等底等高的圆柱的体积有什么关系?
3.圆锥的体积怎么算?体职公式是怎样的?
学生分组做实验,老师巡回指导。
师:我们先来回答第一个问题。在你们做实验用的
器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?
生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。
师:我们再来讨论第2个问题。圆锥的体积和同它等底等高的圆柱的体积有什么关系?
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的`1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是V=1/3Sh。
师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。
(请两名学生上讲台示范实验)
师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。
生齐答:不是。
[说明:变教具为学具,让学生亲自动手实验,使听党、视觉、触觉等各种感官一起参与活动,通过自己亲自动手操作,努力去探索圆锥体积的计算方法,这样的学习,学得活,记得牢,既发挥了教师的主导作用,又充分体现了学生的主体地位。]
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。
求与下面圆柱等底等高的圆锥体的体积。
1.圆柱体的体积是3立方厘米;
2.圆柱体的体积是2.4立方分米;
3.圆柱体的体积是1/2立方米;"
生答略。
师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。
例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3Sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
三、巩固练习
师:现在我们一起来做填表练习。
出示小黑板:
1. 填表:
底面积S (平方米) 高h(米) 圆锥的体积(立方米)
15 9 ()
16 0.6 ()
师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。
2.求下面各圆锥的体积。
(1)半径是3米,高是2米。
(2)直径是4分米,高是6分米。
(3)周长是6,28厘米,高是3厘米。
3.有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)
[说明:练习有层次,形式多样。最后一个层次的练习,又回到动手实验上,而且强化的仍然是本节课最基本、最关键的内容。]
师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用V=1/3Sh这个公式算圆锥体积时,要特别注意什么。
《圆锥的体积》教学设计 篇6
一、教学目标
1、知识与技能
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
二、教学重、难点
重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
三、教具学具
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
四、教学流程
(一)创设情境,提出问题
师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?
生:我选择底面最大的;
生:我选择高是最高的;
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。
(二)设疑激趣,探求新知
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。)
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的`圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:1、实验材料,任选沙、米、水中的一种。
2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)
师:1、谁来汇报一下,你们组是怎样做实验的?
2、通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
(小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则v圆锥=sh÷3即v圆锥=1/3sh
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)
五、联系生活,拓展运用
本练习共有三个层次:
1、基本练习
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。( )
一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是( )
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )
(2)计算下面圆锥的体积。(单位:厘米)
s=25.12 h=2.5
r=4, h=6
2、变形练习
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,
得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,
(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点? v锥=1/3sh
(3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?
3、拓展练习
一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?
活动五:整理归纳,回顾体验
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)
返回首页