返回首页
智远网 > 短文 > 教案 > 正文

三角形内角和教学设计

2025/11/14教案

此篇文章三角形内角和教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

三角形内角和教学设计 篇1

教学目标:

1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:

探索和发现“三角形内角和是180°”。

教学难点:

验证“三角形内角和是180°,以及对这一知识的灵活运用。”

教具准备:

三角形,多媒体课中。

教学过程设计:

一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

二、探究新知:

(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

(二)、拼一拼

引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

引导学生得出:三角形内角和等于180°

(三)折一折

引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展

1、填一填

①直角形三角形的两个锐角和是()度。

②直角三角形的.一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()

2、火眼金晴

①钝角三角形的两个钝角和大于90°()。

②直角三角形的两个锐角之和正好等于90°()。

③淘气画了一个三个角分别是50°,70°,50°的三角形()

④两个锐角是60°的三角形是等边三角形()

⑤长方形的内角和等于360°()。

3、猜一猜:四边形的内角和是多少度?

五边形的内角和是多少度?

四、小结,今天学习了什么?你有什么收获?

三角形内角和教学设计 篇2

教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

教学目标:

1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件、各种三角形等。

学具准备:三角形、剪刀、量角器等。

教学过程:

一、出示课题,复习旧知

1、认识三角形的内角。

(1)复习三角形的概念。

(2)介绍三角形的“内角”。

2、理解三角形的内角“和”。

【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

二、动手操作,探究新知

1、通过预习,认识结论,提出疑问

2、验证三角形的内角和

(1)用“量一量、算一算”的方法进行验证

①汇报测量结果

②产生疑问:为什么结果不统一?

③解决疑问:因为存在测量误差。

(2)用“剪一剪、拼一拼”的方法进行验证

①指导剪法。

①分别拼:锐角三角形、直角三角形、钝角三角形。

③验证得出:三角形的内角和是180°。

(3)用“折一折”的方法进行验证

①指导折法。

①分别折:锐角三角形、直角三角形、钝角三角形。

③再次验证得出:三角形的内角和是180°。

3、看书质疑

【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

三、实践应用,解决问题:

1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

2、求出三角形各个角的.度数。(图略)

3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

70°,它的顶角是多少度?

4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

5、数学游戏。

【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

四、总结全课、延伸知识:

1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

2、知识延伸:给学生介绍一种更科学的验证方法——转化。

【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

板书设计: 三角形的内角和是180°

方法:①量一量 拼角(略)

②拼一拼

③折一折

【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

三角形内角和教学设计 篇3

教学要求

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

教学重点

三角形的内角和是180°的规律。

教学难点

使学生理解三角形的内角和是180°这一规律。

教学用具

每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、出示预习提纲

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?

3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

二、展示汇报交流

1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4、指名学生汇报各组度量和计算的结果。你有什么发现?

5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9、拿一个锐角三角形纸片试试看,折的'方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。

12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13、出示教材85页做一做。让学生试做。

14、指名汇报怎样列式计算的。两种方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

课后反思:

对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

三角形内角和教学设计 篇4

教学内容:

义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.

教学目标:

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备:

多媒体课件、学具。

教学过程:

一、激趣引入

(一)认识三角形内角

1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)

2.请看屏幕(课件演示三条线段围成三角形的过程)。

三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

(二)设疑,激发学生探究新知的心理

1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

学生安要求画三角形.

2.问:有谁画出来啦?

(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!

二、动手操作,探究新知

(一)研究特殊三角形的内角和

1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)

学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)

这个三角形各角的度数。它们的和是多少?

学生回答:是180°。

追问:你是怎样知道的?

生:90°+45°+45°=180°。

把三角形三个内角的度数合起来就叫三角形的内角和。

板题:三角形内角和

2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

90°+60°+30°=180°。

3.从刚才两个三角形内角和的计算中,你发现什么?

这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!

2.每个小组都有不同类型的三角形。每种类型的`三角形都需要验证,小组活动的要求如下:课件显示

组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.

量一量,完成表格.

三角形的名称

内角和的度数

锐角三角形

直角三角形

(2)小组汇报结果。

请各小组汇报探究结果。

(三)继续探究

没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

1.用拼合的方法验证。

小组内完成,活动的要求同上.

拼一拼,完成表格.

三角形的名称

是否可以拼成平角

锐角三角形

直角三角形

对角三角形

2.汇报验证结果。

先验证锐角三角形,我们得出什么结论?

(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

直角三角形的内角和也是180°。

钝角三角形的内角和还是180°)。

3.课件演示验证结果。

请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

我们可以得出一个怎样的结论?

(三角形的内角和是180°。)

(教师板书:三角形的内角和是180°学生齐读一遍。)

为什么用测量计算的方法不能得到统一的结果呢?

(量的不准。有的量角器有误差。)

三、解决疑问。

现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

在一个三角形中,有没有可能有两个钝角呢?

(不可能。)

追问:为什么?

(因为两个锐角和已经超过了180°。)

问:那有没有可能有两个锐角呢?

(有,在一个三角形中最少有两个内角是锐角。)

四、应用三角形的内角和解决问题。

1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2.85页做一做:

在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.

3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)

4.89页16题.思考题

板书设计:

三角形内角和

180°180°180°

三角形内角和180°

三角形内角和教学设计 篇5

教学目标:

1、透过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。并运用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习了数学的兴趣,体验数学学习了成功的喜悦。

教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、猜谜语:(课件)

形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

(打一图形名称)三角形(板书)

2、猜三角形(课件)

师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?

师:提问第3个图形时问:被遮住的两个角是什么角?

会是两个直角吗?为什么?

(引导学生开始对“三角形的内角和是多少”进行思索。)

3、引出课题。

师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和

师:内角和指的是什么?

生:三角形的三个角的度数的和,就是三角形的内角和。

(多让几个学生说一说)

2、猜一猜。

师:这个三角形的内角和是多少度?

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?

3、操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4、学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种状况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到折的方法,请同学们看一看他是怎样折的(课件演示)。

(鼓励学生用心开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理潜力。)

(4)数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的'内角和是180度,而他当时才12岁。

5、巩固知识。

(1)师:你对三角形内角和是多少度还有疑问吗?此刻我们能够肯定的说:三角形的内角和是?度。

(2)解决课前问题,为什么画不出1个内含2个直角的三角形?

1个三角形中有没有2个钝角?

(3)师:我们对三角形的认识已经十分清晰,

出示2个三角形,生分别说出内角和。

把两个小三角形拼在一齐,问:大三角形的内角和是?度。

教师:为什么不是360°?

三、解决相关问题

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

1、看图,求未知角的度数

2、书上88页10题。

教师:刚才,我们利用了三角形的什么?

3、教师:如果一个都不明白,或只明白1个角,你能明白三角形各角的度数吗?

求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。

(3)我有一个锐角是40°。

4、决定。

5、求4边形、5边形内角和。

下课的时间就要到了,我们来一个挑战题。你们敢理解挑战吗?

如果要求10边形的内角和,你会求吗?你有什么发现?

(我的目的不仅仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维潜力。)

四、总结。

师:这节课你有什么收获?

五、板书设计:

三角形的内角和是180°

∠1+∠2+∠3=180°

度量

剪拼

折拼

三角形内角和教学设计 篇6

三角形内角和教学设计(15篇)

作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。我们应该怎么写教学设计呢?以下是小编整理的三角形内角和教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。