返回首页
智远网 > 短文 > 教案 > 正文

《解比例》教学设计

2025/12/10教案

此篇文章《解比例》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。

《解比例》教学设计 篇1

教学目标

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。

教学重点

使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。

教学难点

利用比例的基本性质来解比例。

教学过程

一、旧知铺垫

1、什么叫做比例?

2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

3、比例有几种表示形式?(板书:a:b=d:c a/b=d/c)

二、导入新知

同学们,你们知道吗?比例的基本性质有两个作用,一个就是我们刚才用来判断两个比能否组成比例,而另一个是什么呢?同学们想不想知道?这节课我们就来研究研究。

三、探索新知

1、出示埃菲尔铁挂图

这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的'一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为X米”,把这个X代入这个数学模式中就组成了一个比例式(板书:X:320=1:10)

(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

(11)、指着X:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)

(12)、为什么可以写成这样的等式呢?10X=320*1(根据比例的基本性质)

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。)

(17)、解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)

现在同学们会用解比例的方法来解决问题了吗?

那就做做下面这道题:育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?

2、教学例3

过渡:我们知道比例还有另一种表示形式,当是1.5/2.5=6/X这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

(5)、12/24=3/X

3、巩固练习

4、课堂小结。

(1)、这节课主要学习了什么内容?(板课题:解比例)什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)

(2)、现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)

5、拓展延伸

老师给你们出一道思考题:在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

《解比例》教学设计 篇2

教学过程:

一、导人新课

教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)

二、新课

1、自学解比例。

(1)学生自学教材35页的解比例。

(2)学生交流解比例的意义。

(3)教师归纳:(出示课件)

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、教学例2。

出示例2。

(1) 学生读题,理解题目里的条件和问题。

(2) 学生试着解答此题,一名学生演板。

(3) 师生共评。

(4) 归纳用比例解应用题的方法:

A. 设出题目中要求的未知量为x;

B. 根据比例的意义列出比例;

C. 运用比例的基本性质解比例;

D. 检查、写答语。

(5)试一试:完成练习六第8题。

3、自学例3。

(1)学生独立把例3补充完整。

(2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)

教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。

从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

4、总结解比例的过程。

提问:

(1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

(2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

(3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、完成第35页的做一做。

学生独立解答,订正时,让学生说说是怎么做的。

三、巩固练习

做练习六的第7、9、10题。

四、学有余力的学生做第12*、13*题。

傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的`基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:

3:8=15:40 40:15=8:3

3:15=8:40 40:8=15:3

如果把3、40作为内项,有下面这些比例式:

15:3=40:8 8:40=3:15

15:40=3:8 8:3=40:15

可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。 学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。

《解比例》教学设计 篇3

教学目标

使学生进一步理解和掌握比例的基本性质,知道什么叫做解比例,掌握解比例的方法,并运用解比例的方法解决简单的问题。

教学重点:

进一步掌握和理解比例的基本性质。

教学难点:

掌握解比例的方法。

教学过程

一、复习准备

1、比例的意义是什么?比例的.基本性质呢?

2、运用比例的意义和比例的基本性质,判断下面哪一组中的两个比可以组成比例。

3:4和1.5:2 1/4 :1/3和9:12 72:8和1.2:0.13 3:8和12:32

二、导入新课

今天我们要学习的知识——解比例

三、1、教学例2

这样知道比例中的任意三项,求另外一个未知项叫做比例,同学们能运用原来学习的知识求出3:8=15:x中x的值吗?

学生讨论交流后,并让学生自己介绍这种解法的思路,请其他学生补充完。

2、教学例2

这道题和例2相比,有哪些地方不同?想一想,怎样解?学生讨论解答。“做一做”第2题中的比例。

四、巩固练习

学生独立完成练习十四第1题。

创意作业:

如果5a=3b,你能写出尽量多的比例式吗?并用含a的式子表示出b。大家来比赛谁找的多。

《解比例》教学设计 篇4

教学目标:

1、了解比在生活中的广泛应用。

2、掌握按比分配的解题思路。

3、学会灵活地解决生活中的实际问题。

教学方法:

分析、推理、合作交流,让学生自主探索知识。

教学重点:

学会用比的应用知识解决生活中的实际问题。

教学难点:

学会自主探索解决问题的方法。

教学流程:

一、导入新课

学生展示收集的物品,体会比在生活中应用很广泛。

师:看来,比在生活中应用很广泛,这节课我们来学习《比的应用》。

二、探索新知

1、读题,理解题意。

出示课件,观察老师收集的物品,齐读什么叫稀释液,谈谈自己的理解。

出示例题,齐读,你知道了哪些数学信息?

2、做实验。

师:500ml的稀释液是如何按1:4的比配制成的呢?我们通过下面的实验来了解一下。把水和浓缩液配制在一起,仔细观察看有什么变化?

师:1份的浓缩液和4份的水制成的液体叫什么?你知道500ml的稀释液是几份吗?你是怎么想的`?如果按1:3配制呢?按1:5配制呢?

3、画线段图。

师生一起在线段图上表示浓缩液、水和稀释液之间的关系。让生上台指出各部分表示什么。

师:1份的浓缩液和4份的水合起来是几份?板书:1+4=5?把稀释液看出单位“1”,平均分成5份,浓缩液还能怎样表示?水呢?板书:

4、解决问题。

生独立完成,找生板演,同桌交流,最后集体汇报(注意对应关系)。

5、归纳方法。

方法一,先求每份是多少,再求几份是多少。

方法二,把1:4转化成分数,根据求一个数的几分之几是多少用乘法计算来解决。

6、检验。

师:这道题我们做的对不对呢?如何检验?

三、巩固练习。

1、我们按1:10的比把白米醋加水配制成一瓶550ml的稀释液,加热沸腾后给教室消毒,其中需要醋和水各多少毫升?

2、适用范围、稀释比例(原液:水)、作用时间(分钟)、使用方法

一般物体表面

1:200

10—30

对各类清洁物体表面擦拭、浸泡、冲洗消毒。

1:100

10—30

对各类非清洁物体表面擦拭、浸泡、冲洗、喷洒消毒。

果蔬

1:250

10

将果蔬洗净后再消毒;消毒后用生活饮用水将残留消毒液洗净。

织物

1:125

20

消毒时将织物全部浸没在消毒液中,消毒后用生活饮用水将残留消毒液洗净。

排泄物

1:4

>120

按照1份消毒液、2份排泄物混合搅拌后静置120分钟以上。

周末小明清洗苹果,需要配置502ml的稀释液,需要消毒液和水各多少毫升?

四、全课总结

谈收获,图片欣赏。

《解比例》教学设计 篇5

教学目标:

使学生进一步理解和掌握用比例知识解答应用题的方法。

抓住解题关键进行熟练准确的判断,从而找准题中的`等量关系。

通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。

教学过程:

师:谁能够说说用比例知识解应用题的关键是什么?

判断下题中各量成什么比例?并说明理由?

指导学习题例。

让学生独立解答例7。

在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

不同点:第一种解法是直接设所求问题为X。

第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

学习例6

师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

对比小结

比较例5例6有什么不同?分别是根据什么关系来解答的?

(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

算术解法和比例解法的比较和联系。

观察算式(例5)

练习巩固

笔答题:教材117页1~3题。

全课总结(略)

《解比例》教学设计 篇6

教学内容:解比例

教学目标:

1、使学生掌握解比例的方法,能正确解比例。

2、体现数学服务于生活的思想。

教学重点:掌握解比例的方法

教具:实物投影

教学过程:

一、复习

1、口答,说出下列方程的解答过程:

2X=8x91/2=1/5x1/4。

2什么是比例?比例的基本性质是什么?

3把下面比例改写成两个数相乘的形式

3:8=15:40,9/1.6=4.5/0.8

二、新课

1、出示图片,介绍这是法国著名上午埃菲尔铁塔,塔高320米,在北京世界公园里有一座塔的模型,高度32米,问模型与原来塔高度的比是多少?并化简成最简整数比。

2、出事例题,读题并观察,两道题有什么相同点和不同点

3、讨论,研究解题办法

4、汇报分析不同的解法(此时揭示课题并说明什么是解比例)

5、注意强调列式是两个比前后的一致性

6、出示例31.5/2.5=6/X比较与例2的不同,明确解题思路

7、小结:说明解比例的方法,解比例也就是解方程

三练习

1、求X的.值1/2X=1/4x1/57.8:X=8.2:10

2、书上练习第8题

3、团结路图上距离与实际距离的比是1:30000,它的图上距离是六厘米,它的实际距离是多少米?

4、小兰说她只用一把尺子,一根竹竿就能量出操场上旗杆的高度,你信吗?为什么?下课后尝试去测量。

总结:这节课你收获了什么?怎样解比例?