解方程教学设计
此篇文章解方程教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
解方程教学设计 篇1
解方程教学设计(15篇)
作为一名教师,总不可避免地需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么什么样的教学设计才是好的呢?以下是小编帮大家整理的解方程教学设计,仅供参考,大家一起来看看吧。
解方程教学设计 篇2
【教学内容】:
《义务教育课程标准实验教科书数学》五年级上册第
58、59页例
1、例2。
【教材分析】:
本节课是学生在掌握了等式的性质及方程的意义的基础上正式学习解方程的初始课。主要讨论x+a=b, ax=b的方程的解法。这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的重点内容之一。对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。
【教学目标】:
1、能根据等式的性质解较简单的方程。
2、通过探究较简单的方程的解法,培养利用已有知识解决问题的意识和能力。
3、培养规范书写和自觉检查的习惯。
【教学准备】:
挂图、天平、小球、小黑板等。
【教学课时】:
1课时。
【教学过程】:
(一)、复习旧知,导入新课
1、什么叫方程的解?什么叫解方程?
方程的解:使方程左右两边相等的未知数的值,叫做方程的解; 解方程:求方程的解的过程叫做解方程;
揭示课题:这节课我们就来学习解最简单的方程——简易方程。 板书:解简易方程。(学生齐读课题)
(二)、提出问题,探究新知
1、提出问题,教学例1 师:请看挂图,请你说出图上的意思。(盒子里有x个小球,盒子外有3个球,合起来一共是9个小球。)
师:能不能用我们新学的方程解决这个问题
学生列出方程:X+3=9(引导学生根据加法的意义列出方程。)
师:同学们根据加法的意义的到方程X+3=9,(板书:X+3=9)那么X是多少?(异口同声说6)
- 1X+3=9 解: X+3-3=9-3 X=6 提问书写解方程的过程要注意什么?
教师示范书写格式,①、先写方程X+3=9。②、接下来写“解:”。③、方程的左右两边同时减去3。④方程的左边只剩下未知数X。方程的右边9-3是6。得到方程的解是X=6。
在这里需要强调一点,解方程时每一步得到的都是一个等式,不能连等。另外还要注意等号对齐。
师:X=6是不是就是正确答案呢?我们来验算一下。 指名学生回答,教师板书:方程的左边= X+3 =6+3 =9 =方程的.右边
所以X=6是方程的解
像这样我们就把X+3=9这个方程的解解了出来,那么我们是怎么做到的?
我们是在方程两边同时减去同一个数,方程左右两边仍然相等。
5、巩固练习
20+x=47 解: 20+x○□=47○□ x=□
(自己解方程,对照答案,检查自己做的,哪儿错了。)
(设计意图:从一开始就强化必要的书写规范,以发挥首次感知先入为主的强势效应,有利于促进良好的书写习惯的形成。)
6、教学例2 师:同学们我们刚才用解方程的方法求出了X+3=9这个方程的解是X=6那么你对解方程这个概念是不是有一点感觉不知道换一种形式你还有没有把握。
出示例2:解方程3X=18 师:你能用解这个方程吗? 3X表示什么意思?
那么这个方程就可以理解成已知3个X等于18,求一个X等于多少? 师:请同学们独立思考,自己试着完成例2的填空,并自己验算。
7、讨论交流:
①、你是怎样让方程的左边只剩下X,还能让方程的两边相等? ②、怎样把这个过程在方程中表示出来,又使方程左右两边保持相等?
3X÷3=18÷3
解方程教学设计 篇3
教学目标:
1、学会利用等式性质1解方程;
2、理解移项的概念;
3、学会移项.
教学重点:利用等式性质1解方程及移项法则;
教学难点:利用等式性质1来解释方程的变形.
教学方法:引导发现
教学过程:
一、引入新课:
1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?
方程是等式,但必须含有未知数;
等式不一定含有未知数,它不一定是方程.
2、下面的一些式子是否为方程?这些方程又有何特点?
①5x+6=9x;②3x+5;③7+5×3=22;④4x+3y=2.
由学生小议后回答:①、④是方程.
分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数.
我们先来研究最简单的(只含有一个未知数的)的一元一次方程.
3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程.
注意:一次方程可以含有两个或两个以上的未知数:如上例的④.
4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程.
5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)
①2x+3=11;②y=16;③x+y=2;④3y-1=4y.
6、什么叫方程的解?怎样解方程?
关键是把方程进行变形为x=?即求得方程的解.今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程
二、讲解新课:
1、等式性质1:
出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形.
强调关键词:“两边”、“都”、“同”、“等式”.
2、利用等式性质1解方程:x+2=5
分析:要把原方程变形成x=?只要把方程两边同时减去2即可.
注意:解题格式.
例1 解方程5x=7+4x
分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x.
(解略)
解完后提问:如何检验方程时的计算有没有错误?(由学生回答)
只要把求得的解代替原方程中的.未知数,检查方程的左右两边是否相等,(由一学生口头检验) 2
观察前面两个方程的求解过程:
x+2=5
x=5-2 5x=7+4x 5x-4x=7
思考:(1)把+2从方程的一边移到另一边,发生了什么变化?
(2)把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)
3、移项:
从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项.
注意:①移项要变号;
②移项的实质:利用等式性质1对方程进行变形.
例2 解方程:3x+4=2x+7
解:移项,得3x-2x=7-4,
合并同类项,得x=3.
∴x=3是原方程的解.
归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;
②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;
③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系).
四、课堂小结:
①什么是一次方程,一元一次方程?
②等式性质1(找关键词);
③移项法则;
④应用等式性质1的注意点(例2归纳的三条).
六、板书设计
七、教学后记
解方程教学设计 篇4
学习内容:人教版五年级上册p57-59页
学习目标:
1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。
2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。
3、在观察、猜想、验证等数学活动中,发展学生的数学素养。
学习重点:用等式的的性质解方程,理解算理
学习过程:
一、创设情境,引出方程
1、研究例1:
猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?
导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)
设问:能用一个方程来表示吗?板书x+2=6
二、探究算理
设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?
预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4
研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?
学生上台用天平演示
请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2
追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?
尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)
讲解解方程的书写格式(与天平相对应)
小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。
尝试:解方程:x-1=3,
想一想:如果要用天平的乒乓球,如何来表示出这个方程?
指名摆一摆,学生尝试解决,并用操作来验证
2、研究例2:3x=18
学生尝试后出示:3x÷3=12÷3
用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。
展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数
总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……
三、巩固练习:
1、p59页1
2、后面括号中哪个是x的值是方程的解?
(1)x+32=76 (x=44, x=108)
(2)12-x=4 (x=16, x=8)
3、解方程
p59页第2题的前面四题,要求口头验算
四、总结:
五、机动:研究练习2中的第二题,怎么用今天的'方法来解方程。
让"天平"植入解方程中
《解简易方程》是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数化思想有着极其重要的作用。本节课教材在编写上为了实现中小学的衔接,改变了以往利用“加减法逆运算和乘除法逆运算”而是利用天平原理即等式的性质来解方程,由于学生在前面已经积累了大量的感性经验(逆运算)来解方程,对于今天运用天平的原理来解方程,造成了极大的干扰,所以在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。
1、在具体情境中理解算理,经历代数的过程。
新课程在数与代数的编排中最大的变化是取消了单独的应用题编排,而是把应用与计算紧密的结合起来编排,每一个内容都是以主题图的形式来呈现,主要的是目的是让学生在具休的情境中理解算理,同时也在计算教学中培养学生的应用意识。本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时加上、减去、乘以或者除以相同的数是本节课的重点。我通过创设情境,通过天平上的乒乓球的移动和补凑,来理解算理,而后利用小棒和棋子自己来解释说明算理,突显出本节课的重点。同时在情境的创设中,通过猜球,与天平的呈现信息,让学生经历由直观的生活抽象为化数化的过程,从中渗透化数化的思想。
2、在直观操作中掌握方法,发展数学素养。
新课程标准指出“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”在本节课中,通过充分的直观,利用学生熟悉的乒乓球、小棒等素材,力图把方程建构于天平之中,通过导入时从直观到抽象,再到尝试时从抽象的式子分别直观的乒乓球与小棒来表示,打通天平与方程之间的关系,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的图画,用自己的操作解释、验证中发展学生的数学素养。
二点困惑:
1、纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?
2、教材中回避了a-x=b与a/x=b二种方程,但在实践中经常要碰到,教师如何来解决这个问题?
一点遗憾:这节课在构思加入了大量的操作活动和直观材料,主要的目的是让学生解方程的过程中在学生的头脑中植入天平,并给学生以自我解释与验证的机会,但操作的作用在每一次实践中都没有得到最大化的发挥,如何来提高操作的效性,让操作的目标更明确,是以后这节课研讨中重点商切的问题。
解方程教学设计 篇5
教学目标:
1、理解解方程的意义。
2、会用等式的性质解形如:ax=b的方程,并能用方程的解对方程进行验算。
教学重点:学生利用等式的性质来解方程。
教学难点:学生利用等式的性质来解方程。
教学过程:
一、 复习引入
1、填空:
加数=( )-另一个加数 被减数=( )+( )
被除数=( )×( ) 因数=( )÷( )
2、CIA课件出示:根据题中的数量关系,列出方程。
(1)小明有30元钱。买钢笔用了m元,买本子用了10元,刚好用完。
(2)小红家买了50千克的大米,吃了n千克,还剩42千克。
(3)全班a个同学,平均分成个7小组,每个小组8人。
(4)钢笔每支4元,买X支用了24元。
师:刚才我们列出的这些方程,你能求它的解吗?(师板书:4X=24)
这个方程的解是多少呢?(X=6)
今天我们就一起来学习怎样求方程的解——解方程
揭示课题并板书:解方程
二、探究学习
1、学习解方程
(1)自主探究求方程的解。
(2)汇报,抽生板演。
(3)师指导学生看书101页的内容,学习正确的书写格式,动笔勾画出你认为比较重要的地方.
(4)师规范解方程的格式。
第一种:根据四则混合运算各部分之间的关系
4X=12
解: X=12÷4
X=3
第二种:根据等式的性质
4X=12
解: 4X÷4=12÷4
X=3
比较两种方法的优点和缺点,请将刚才的解题过程再按正确的书写格式做一遍。
揭示解方程的含义;区分解方程和方程的解。
2、方程的检验。
3、巩固练习:CIA课件出示(学生独立完成,集体评讲)
三、自主学习
刚才的几个方程,请任选一道用你喜欢的方式求方程的解,并口头检验。
师:大家认为在解方程的时候应该注意些什么?在哪些方面需要提醒同学主义的呢?
四、全课小结。通过这节课的学习,你有什么收获?你还有哪些疑问?或者是不明白的地方吗?
五、课堂练习:
1、解方程
20-X =9 25+ X =80 6.3 ÷X =7
2、做书上104页1、2、3题。
六、板书设计:
解方程
法一:四则混合运算各部分之间的关系 法二:等式的.性质
4X=12 4X=12
解: X=12÷4 解: 4X÷4=12÷4
X=3 x=3
七、教学反思:
通过本节课的学习,学生已经基本上掌握了方程的解题的依据以及书写格式,但是很多同学在做a÷x=b这种形式的方程时还是容易搞混淆。需要加强练习和多做相关的题型,特别是在前节内容据题意列方程还得多找相关等量的关系,达到复习以前的知识和巩固现在的新知识的目的。
解方程教学设计 篇6
教学目标:
1、初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
2、初步理解等式的基本性质,能用等式的性质解简易方程及检验的方法。
3、培养的分析能力应用所学知识解决实际问题的能力。
4、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。帮助养成自觉检验的良好习惯。在教学中渗透环保教育。
教学重点:理解并掌握解方程的方法。
教学难点:理解并掌握解方程的方法。
教学准备:教学课件。
教学流程:
一、复习铺垫:
1、教师:前面我们学了方程的意义,你还记得什么叫方程吗?(含有未知数的等式叫方程。)怎样判断一个式子是不是方程?
2、判断下面哪些是方程吗?
(1)a+24=73(2)4x<36+17(3)234÷a>12
(4)72=x+16(5)x+85(6)25÷y=0.6
3、教师:上节课我们还通过玩天平游戏认识了等式的基本性质,还记得等式的基本性质吗?
4、新课引入:这节课,我们就来应用等式的基本性质去解简易方程。(板书课题:解简易方程)在学习解简易方程前,我们先来认识两个概念----方程的解和解方程。
二、探究新知:
认识方程的解和解方程:
1、看图写方程。
出示上节课用天平称一杯水的情景图。(100+X=250)
2、求方程中的未知数
教师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?
学生交流后汇报:
方法一:根据加减法之间的关系250-100=150,所以X=150
方法二:根据数的'组成100+150=250,所以X=150
方法三:100+X=250=100+150,所以X=150
方法四:假如在方程左右两边同时减去100,那么也可得出X=150
3、引出方程的解和解方程的概念。
教师:使方程左右两边相等的未知知数的值,叫做方程的解。像上面,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程。
4、辨析方程的解和解方程两个概念。
教师:方程的解和解方程这两个概念有什么区别?
5、完成课本57页做一做:X=3是方程5X=15的解吗?X=2呢?
探究例1:
1、出示例1图,让学生说图意后列出方程。
2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。
3、学生独立完成解方程,并板示,着重强调解方程的步骤和书写格式。
x+3=9
解:x+3-3=9-3
x=6
4、引导学生检验方程的解。
探究例2:
1、引入和出示例2:前面我们利用天平保持平衡的道理求出了方程x+3=9的解,下面我们再利用天平保持平衡的道理来求出方程3X=18的解,同学们有信心吗?
2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。
3、学生独立完成解方程。
3x=18
解:3x÷3=18÷3
x=6
方法总结:
1、交流讨论:如果方程两边同时加上或乘以一个数,左右两边会相等吗?
2、总结:利用天平保持平衡的道理(也就是等式的基本性质)等式两边都加上或减去(乘或除以相同的数),可以求出方程的解。
三、应用巩固:
1、完成课本59页“做一做”的第1题,先找到等量关系,再列出方程并解方程。
2、解方程。
x+3.2=4.6x-1.8=4x-2=15
1.6x=6.4x÷7=0.3x÷3=2.1
3、我会选
(1)32+χ=76的解是()
A、χ=42B、χ=144C、χ=44
(2)χ-12=4的解是()
A、χ=8B、χ=16C、χ=23
(3)5χ=60的解是()
A、χ=65B、χ=55C、χ=12
(4)χ÷20=5的解是()
A、χ=15B、χ=100C、χ=4
4、解决问题。
教师:请同学们认真观察图,你能根据题意列出方程并解方程吗?
四、全课小结、课外延伸:
教师:这节课你有什么收获?请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。
返回首页