五年级数学教案
此篇文章五年级数学教案(精选6篇),由智远网整理,希望能够帮助得到大家。
五年级数学教案 篇1
教学内容:
观察5个或6个相同正方体摆成的物体
教学目标:
1、通过从下面、上面以及不同侧面观察5个或6个相同正方体摆成的物体,积累辨认物体视图的经验,体会物体的相对位置关系。
2、使学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观察。
3、体验数学与日常生活的关系。
教学重点:
积累辨认物体视图的经验
教学难点:
体会物体的相对位置关系
教学准备:
学具盒
教学思路:
一、导入新课:
出示4个同样大小的正方体摆成的.物体。
让学生观察,说说从下面、侧面和上面看到的视图。
接着追问:还可以怎样摆?
二、探究新知:
让学生试一试,再看一看。
学生分组展示不同的摆法。
集体交流:你能找到摆的方法吗?
引导学生发现:在原来物体的前面或后面,与原来的某一个正方体对齐着放一个都是正确的。
五年级数学教案 篇2
教学目标:
1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;
2.让学生经历猜想、验证等过程,体验数学研究的方法;
3.培养逻辑推理能力,渗透一定的.数学思维方法。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学过程:
一、创设情境激趣揭题
1.出示我国古代哲学著作的情景。
2.出示复习题
3×2/54/5×2
二、扶放结合探究新知
1.画图引导学生理解1/2-1/2的算例。
2.出示3/4-1/4引导学生验证上面的计算方法,岩石推理过程。
3.出示2/3-1/5,5/6-2/3写出计算过程,小结计算方法:
分子乘分子,分母乘分母。
三、反馈矫正落实双基
1.出示教材第8页试一试1-3题。
2.引导学生发现规律。
四、小结评价布置预习
1.引导学生进行课堂小结。
2.布置预习:教材10-11页练习一。
板书设计:
意义:求一个数的几分之几是多少?
计算法则:分子乘分子作分子,分母乘分母作分母。
五年级数学教案 篇3
教学目标:
1、使学生能根据要求正确地运用“四舍五入”法求一个小数的近似数。
2、能正确的按需要用“四舍五入”法保留一定的小数数位。
3、会把较大的整整改写成以“万”或“亿”作单位的小数,再求近似值。
教学重点:
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数。
教学难点:
使学生能够区别求近似数与改写求准确数的方法。
教具准备:
多媒体课件。
教学过程:
一、情境导入
师:我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它.的近似数就可以了。如在商店买菜时,电子秤上显示总价是7.53元,而营业员只收我们7元5角。平常不需要说得那么精确,只要知道它的近似数即可,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题川、数的近似数) 。
二、自主控究
1.求一个小数的近似数。
(课件出示豆豆测量身高的情景图)
师:读情景.图,你能找出已知信息和所求的问题吗? .
生1:要解决的问题是如何得出豆豆身高的近似数。
生2:已知信息是豆豆的身高是0.984m,亮亮说:“豆豆身高约是0.98m。”红红说:“豆豆身高约1m”。
师:对于上面的已知信息,你是怎样理解的?
生b“豆豆的身高是O.984m”,这里的0.984m,是测量时精确到毫米得到的。
生2:“豆豆高约0.98m”,这里的0.98是精确到厘米得到的。
生3:“豆豆高约1m”,这里的l是精确到米得到的。
师:为什么会出现上面不同韵结果呢?
生:0.98和1都是0.984按不同要求取的近似数。
师:取一个整数的近似数用到的方法是什么?
生:我们取一个整数的近似数时,用到的方法是“四舍五入”法。
师:对,“四舍五入”的方法同样适用于小数取近似数。
师:下面同学们以小组为单位,讨论一下,0.984m是如何得到0.98的?
(小组讨论,全班交流)
生:“豆豆高约是0.98m”,这里的0.98m是把豆豆身高0.984m保留两位小数得到酌结果。
师:它是如何取的两位小数?
生:按要求把一个小数保留两位小数时,一般要看到千分位,如果千分位上的数大于或等于5就要向百分位进1,如果千分位上的数小于5,就舍去。
0.984≈O.98(保留两位小数),因为千分位上的4小于5,所以舍去。
师:“豆豆高约lm”,这里的lm是把0.984m保留整数得到的结果。一个小数怎样才能保留整数呢?
生:一个小数,如果保留整数,就要看这个小数的十分位,然后按照“四舍五入”法取近似值,0.984m-≈lm。
师:如果0.984m保留一位小数,结果又是什么呢?
生:把0.984m保留一位小数,就要看到百分位,百分位上是8,大于5,就要向十分位进1,十分位上是9,9+1=10,接着向个位进1,个位上0+1=1,所以0.984m保留一位小数是1.0m。
0.984≈1.0(保留一位小数),百分位上8大于5,向前一位迸1。
师:后面的0可以省略不写吗? ,
生:不能,因为要是省略就变成精确到整数部分的个位了。
2、把较大的整数改写成以“万”或“亿”作单位的小数。
师:读图,你能读出什么信息?
生:地球与月球的距离是384400km。
师:384400km,数据比较大,书写起来也不方面,你能把它改成以“万”为单位的数吗?
(小组讨论,全班交流)
生:改写成“万”作单位的数,就是把这个数缩小到原数的1/10000,也就是把小数点向左移动四位,然后点上小数点。
师:你会表示吗?
生:384400km=38.44km
师:上面的改写方法正确吗?
生:不正确,因为384400和38.44根本就不相等。
师:那怎么办呢?谁有办法解决这个问题?
生:在38.44的`后面加上一个“万”字即可,因为把384400变为38.44缩小到了原数的而1/10000。
师:好,上面的这一过程可以表示为384400千米=38.44万千米。
师生共同总结:小数点向左移动四位,在万位的右边点上小数点,在数的后面加上“万”字。
师:读情景图,你发现了哪些数学信息?
生1:已知木星距离太阳778330000km。
生2:所要解答的问题是木星离太阳的距离是多少亿千米?(保留一位小数)
师:这个问题和上面的问题有哪些相同和不同的地方?
生:上面是把一个数改写成用“万”作单位的数,这个问题是把一个数改写成用“亿”作单位的数,并且还要求保留一位小数。
师:把一个数改写成用“亿”作单位和改写成用“万”作单位有什么相同之处?
生:都是把大数改写成一个用小数表示的数,所以都应该是把小数点向左移动。
师:改成以“万”为单位的数,小数点向左移动四位,那么改成以“亿”为单位的数,小数点向左移动几位呢?
生:应该是八位,然后加“亿”字。
师:好!同学们真聪明,用自己的思维,类推了把一个数改成用“亿”作单位的数。你能写出改写过程吗?
(学生独立尝试,全班投影展示)
778330000千米=7.7833亿千米
师生总结方法:小数点向左移动八位,在亿位的右边,点上小数点,在数的后面加上“亿”字。
师;如果保留一位小数,你会吗?
生:7.7833亿千米≈7.8亿千米
三、控究结果汇报
师:用“四舍五入”法,求一个数的近似数时,有哪些需要注意的地方?
(小组讨论,汇报交流).
生:用“四舍五入”法求一个小数的近似数时,保留整数,表示精确到个位,看到十分位;保留一位小数,表示精确到十分位,要看到百分位;保留两位小数,表示精确到百分位,要看到千分位……
师:表示近似数时,小数末尾的0怎么办呢?
生:表示近似数时,小数末尾的0是不能省略的。
师:如何把一个较大的数改成以“万”或者“亿”为单位的数?
(小组讨论,全班交流)
师生总结:把一个大数改写成以“万”为单位的数时小数点向左移动四位,加上“万”字。把一个大数改写成以“亿”为单位的数时小数点向左移动八位,加上“亿”字。
师:改写时,需要注意什么?
生:在改写的过程中,不要把单位“万”“亿”丢掉。
四、师生总结收获
师:同学们,通过本节课的学习,你有哪些收获?
生1:求小数的近似数的方法和求整数的近似数的方法类似,都是采用“四舍五入”法。
生2:把大数改写成用“万”或“亿”作单位的数,写起数来就简单多了,这体现了数学的简洁思想。
师:小数的近似数在我们的生活中应用非常广泛,我们的身边就有很多类似的数,你们课下去找一找,看看它们都存在于我们生活中的哪些地方。让我们在发现中学习数学,体会数学与我们的密切联系,做生活中的有心人!
【设计意图:在教学过程中,学生能够在知识、能力、数学思想方法以及学习方法上有所收获】
板字设计:
例1:0.984保留两位小数 0.984保留一位小数 0.984保留整数
0.984≈0.98 0.984≈1.0 0.984≈1
↑ ↑ ↑
小于5,舍去 大于5,向前一位进1 大于5,向前一位进1
例2 例3
142800千米=14.28万千米 778330000=7.7833亿千米≈7.8亿千米↑
五年级数学教案 篇4
一、教学目标
1、通过直观的折纸操作活动,理解异分母分数加减法的算理,能正确计算异分母分数的加减法
2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。
3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。
二、教学重、难点
1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。
2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。
三、教学设计
(一)动手操作,明确目标
1.谈话导入,开门见山板书课题:
异分母分数加减法,出示学习目标,生齐读
(1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的
加减法。
(2)通过直观的操作活动,理解异分母分数加减法的算理。
师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折
纸研究解决解决异分母分数加减法的相关知识,有信心吗?
2.请看要求
①折一折:平均折出你喜欢的份数。②画一画:用斜线画上你想画的份数。③说一说:画斜线部分是正方形纸片的几分之几?
3.动手操作
师:老师已经给每位同学都准备了两张大小一样的正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)
4.学生汇报展示。
师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)
5.提出问题,明确目标
师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)
想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)
还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)
师:从学生汇报的异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。
(二)自主探索,理解算理
1、自主探索进行算理探究。
师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:
结论1:(1/2+1/4=1/6)
结论2:(二分之一加上四分之一等于四分之三)
结论3:(二分之一加上四分之一等于六分之二)
2、讨论验证
师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?
生:在全班范围内展开讨论,充分发表各自的意见。
3、理解算理。
师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。
注意通过展示学生的`折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。
师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?
出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。
师:可不可以将百分位上的1加上十分位上的3?
生1:不可以。因为相同的数位没有对齐。
生2:小数点没对齐。
师:小数点没对齐也就是什么没对齐?——数位没对齐
师:数位不同也就是什么不同?(计数单位)
师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)
师:通过大家的交流,现在大家明白在做异分母分数加减时为什么不能直接将分子、分母相加、减的原因了吗?
4、小结算理
谁来说究竟该怎样计算异分母分数的加法呢?
生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。
(三)迁移应用,巩固提高
1.迁移应用,解决减法问题:
1/2-1/4=
2.完成“试一试”
出示试一试的+与-,再次为学生提供尝试机会。
(学生练习后全班回馈交流,并规范书写格式。)
四、总结规律,内化提升
师:通过刚才的学习,你发现异分母分数加减法应怎样计算?
生:异分母分数加减法要先通分,化成同分母分数加减法,再加减。(随着学生汇报教师板书):异分母分数通分转化同分母分数
五、作业布置
五年级数学教案 篇5
整理和复习
教学要求掌握统计的步骤(数据收集与数据整理),会认识统计表、会填充统计表。掌握较复杂的求平均数的应用题的解答方法。
教学准备投影片(仪)
教学过程
一、边练习边复习
学生在课本上自己完成,并根据题目体会:
1.分段对数据整理的方法
2.怎样从复式统计表中获取信息。
3.求平均数应用题应该注意什么问题?
二、学生小组合作学习
1.统计的.步骤是什么?对应的方法是什么?
2.求平均数应用题的思路是什么?(分什么;按什么分)
三、课堂实践
练习四的1~3题。
四、课外实践
练习四的第4题。
课后反思:
学生习惯于用自己的方法进行学习,因此在教学中应该鼓励学生大胆地去尝试,用多样化的方法方式进行探索。
五年级数学教案 篇6
一、教学目标:
1、教会学生认识长方体。
2、教会学生用纸壳动手做长方体。
3、使学生认识并理解长方体的长、宽、高。
4、培养学生的探索意识和实践能力。
5、培养学生初步的空间观念和空间想象力。
二、教学重点:
掌握长方体的特征,认识长方体的长、宽、高。
三、教学难点:
学生理解长方体相对的面完全相同的特点;体会棱与顶点的产生。
四、课前准备:
长方体实物、长方体框架
五、教学过程:
1、谈话引入。
在讲新课之前,我们先回忆一下,以前学过哪些几何图形?
提问:这些都是什么图形?(这些图形都是由线段围成的平面图形)
2、出示图。这些你看知道是什么吗?它们是什么图形?
提问:这些物体的形状还是平面图形吗?(不是)
老师:这些物体都占有一定的空间,它们的形状都是立体图形。
3、举例。
在日常生活中你还见到过哪些形状是长方体的物体?
正因为有了长方体,我们的世界才变得更加美妙神奇。这节课我们就一起走进长方体,来领略长方体的奥秘。
板书课题:长方体的认识(老师根据学生回答,利用多媒体在计算机屏幕上显示下列图形。)
4、认识长方体的面、棱、顶点。
( 1)请学生拿出自己准备的长方体学具,摸一摸、说一说,你有什么发现?(长方体有平平的面)
( 2)再请学生摸一摸长方体相邻两个面相交的地方有什么?(边)
老师讲述:我们把这两个面相交的边叫做棱。板书:棱
( 3)再请同学摸一摸长方体三条棱相交的地方有什么?(有一个点)
老师:我们把三条棱相交的点叫做顶点。板书:顶点
( 4)师生在长方体教具上指出面、棱、顶点,学生依次说出名称。
老师说出顶点、面、棱的名称,学生迅速在学具上指出。
5、研究长方体的特征。
(1)师:面、棱、顶点里面还蕴藏着许多特征,你们想不想知道?
观察手中的长方体实物比一比,数一数,量一量,相信同学们一定会有许多惊喜的发现,你们有信心吗?
(2)生采用自学、小组讨论,同桌探讨等形式,从数量、形状、大小等方面研究长方体的特征。
(3)交流自己的发现
顶点有什么特点?(8个)棱有什么特点?(12条,怎样数不容易遗漏?相等的棱有怎样的`位置关系?)
面有怎样的特征呢?(6个面。是长方形,面的大小关系怎样?)
长方体相对的面有怎样的特征呢?(面积相等,形状相同)
(4)投影出示两个长方形:这是两个面积同为90平方厘米的长方形,一个长是10厘米,宽是9厘米;另一个长是15厘米,宽是6厘米。它们可以做长方体相对的面吗?
6、教学长方体的长、宽、高。
(1)师:观察老师手中的长方体框架,如果把长方体的棱分组的话,你会怎样分?生思考并试着分一分。
(2)揭示概念:相交于一个顶点的三条棱和长度分别称之为长方体的长、宽、高。
(3)长、宽、高各有几条呢?(生试说)
(4)生试着指出手中长方体的长、宽、高。
(5)(变换长方体的摆法)现在它的长、宽、高呢?
(6)小结:虽然是同一个长方体,但摆法变了,长、宽、高也就随着发生变化。
(7)口诀:
长方体立体形,8顶6面十二棱;棱分长、宽、高,每组四条要记好;6
个面对着放,对应面都一样。
7、完成P19做一做
(1)做一个长方体
(2)观察并回答
总结这节课你有何收获?
六、教学结束:
作业布置:要求学生回去动手做个长方体,下节课带来进行展示。
返回首页