五年级数学教学设计
此篇文章五年级数学教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
五年级数学教学设计 篇1
学习目标
1、利用自己的方法,探索并掌握平行四边形面积的计算公式,会计算平行四边形的面积。
2、重点理解拼成的长方形和原来平行四边形的关系
教学过程:
一:回顾以前的知识、
师:今天我们学习什么知识?
生平行四边形的面积
师:先让我们汇报一下以前学过的相关知识吧?
生:长方形的面积=长乘宽正方形的面积=边长乘边长
平行四边形对边平行且相等平行四边形有无数高(出示课件)
师:小结从平行四边形的任何一边的一点,向对边都可以做一条高
二:我有成果展示
1师:通过预习,你有什么成果要向大家展示的?
生:汇报
2:师:好,大家自己都学会了这么多有关平行四边形面积的知识,现在,谁能简单的猜猜我们本节课的学习目标是什么?
3:师出示学习目标。
4:依据学习目标,你有什么疑问要提出吗?
生:汇报
师:不管有什么疑问,我们通过以下环节,看看是否其他同学能帮助你解决?
三:自主探究
一:拿出导学案:
师:谁能汇报一下,你完成表格的.情况。(教材第80页的表格)
生:汇报
师:谁能说一说,平行四边形的面积,你是怎样知道的?
谁能说一说,你是怎样数出来的吗?
生:我先数整个格的是20个,在数八个半格的是整四个格,合起来是24个整个,也就是24平方米
师:我们也可以用平移的办法来得出平行四边形的面积,(课件演示)
师:那长方形的面积呢?
生可数出来,也可以用长乘宽计算
师:请大家观察表格的数据,你发现了什么?
生:平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,平行四边形的面积等于长方形的面积。
生:我们可以看出平行四边形面积=底乘高
师:我们如果用数方格的方法来计算平行四边形的面积,你会感觉怎样?
生麻烦
三合作探究
师:那我们可以用什么方法研究呢?
生:把平行四边形转化成长方形。
师:你是怎样把平行四边形转化成长方形的吗,请拿着你的平行四边形学具边演示边说。
生:过平行四边形一个顶点,沿着平行四边形地边上的高剪开。
师还有其他不同的剪法吗?
生:沿着平行四边形这一条边上的高剪开。
师:同时出示课件
师:听了同学们的简拼方法,你还有什们疑问吗?
生:老师为什么要沿着高剪开呢?
师:谁能帮助这位同学回答。
生:这样剪可以使两边变成直角,变成我们学过的长方形。
师刚才有的同学说沿高剪成了正方形,者必须满足什么条件呢?
生:平行四边的高等于平行四边形的底,这是特殊情况。
师:小结我们从平行四边形一组对边任意一点作高,通过平移都可拼成长方形或正方形。(课件出示结论)
师:观察拼成的长方形和原来的平行四边形,你能发现什么?
小组合作交流自己预习的成果。
请生汇报。
生:拼成长方形的面积和平行四边形的面积相等,面积不变。
拼成的长方形的长等于原来平行四边形的底,长方形的宽等于平行四边形的高
师:既然面积没变,什么变了呢?形状变了。
师:还有什么变了?
生沉默
师:周长变了吗?
生:变了
师:变大了还是变小了呢?谁能说说?
生:边指边说长方形的长就是平行四边形的底,长方形的宽比平行四边形高变短了,所以周长变小了。
师:给予积极肯定。
师:既然长方形的面积=长乘宽,那么同学们可以推导出平行四边形的面积吗?
生:平行四边形的面积=底乘高
师:为什么平行四边形的面积等于底乘高?
生:因为拼成的长方形的长等于平行四边形的底,宽等于高,长方形的面积等于长乘宽,所以平行四边形的面积的等于底乘高
师:用字母怎样表示?
生:s=ab
师:小结刚才你们用剪拼的方法,将平行四边形转化成长方形,用旧知解决了新问题,非常好!实际这种解决问题的方法是应用了数学转化方法,今后在数学中,我们会经常用到。
师:出示例1:平行四边形的花坛的底是6m,高是4m,它的面积是多少?
生:自己解决。(集体纠正)
四:达标测评
一:人人轻松来过关
1:选择条件计算平行四边形的面积(单位:米)
二:迈开大步跨过关:
(看大屏幕略)
三:大胆跳起闯过关:
(1)平行四边形的底越长,它的面积就越大。()
(2)形状不同的两个平行四边形,面积可能相等。()
(3)把一个长方形木框拉成一个平行四边形木框,周长不变,面积也不变。()
四:一题多解
人民公园有一个平行四边形的草坪,草坪上有一个长30m,宽2。5m的甬道,求草坪的面积
五年级数学教学设计 篇2
教学内容:
教材80页例1,练习十四1~4
教学目标:
1、让学生探索并掌握异分母分数加、减法的计算方法,能正确计算简单的异分母分数加、减法。
2、让学生进一步体会数学知识之间的内在联系,感受转化思想在解决新的问题中的价值,发展数学思维。
3、让学生在学习活动中进一步体验数学学习过程的探索性,获得成功的乐趣。
教学重点:
探索并掌握异分母分数加、减法的计算方法。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、谈话导入
我们在三年级已经学过同分母分数的加减法,你会计算下面的题目吗?
出示口算题:
2/4+1/47/9-5/94/8+3/88/10-7/10
交流:你是怎么想的?
导入:这节课我们继续学习分数的加、减法。
二、教学例1
1、出示例1
指名读题。
提问:怎样列式?为什么?
这道算式与我们以前学过的分数计算有什么不同呢?
揭示课题
2、探索计算方法
谈话:我们可以用一张长方形纸表示这块试验田,折一折、涂一涂,在这张长方形纸上分别表示出它的1/2、1/4
学生操作,教师适当指导。
交流:根据你的操作,说说1/2+1/4的得数是多少?
你是怎样看出得数是3/4的?把涂色部分看成3/4时,原来的1/2被看作了几分之几?
想一想,如果不看图,计算1/2+1/4时,先要做什么?
提问:把异分母分数转化成同分母分数的过程,我们应用了什么知识?这个过程也叫什么?想一想,计算异分母分数加减法时,为什么要先通分?
完成书上的填空。
3、把例1的问题改成:黄瓜的面积比番茄多这块地的几分之几?
学生尝试解答
评讲。
重点提问:计算时,要先做什么?
三、教学“试一试”
1、指名读题。提问:除了计算之外,题目还有哪些要求?
2、学生独立计算并验算。
3、讲评。
提问:5/6-1/3的得数是多少?作为得数,3/6和1/2哪个更简洁?
指出:计算结果能约分的`,要约成最简分数。
提问:你是怎样计算1-4/9的?为什么要把1转化成9/9?
你是怎么进行验算的?
4、总结方法:
计算异分母分数加减法要注意什么?小组交流。
总结:计算异分母分数加减法时,要先通分,再按同分母分数加减法进行计算;计算结果能约分的要约成最简分数;计算后要自觉验算。
四、完成“练一练”
学生计算,并选择一题进行验算。
交流。
五、诊断练习
下面的计算对吗?不对的,请帮助改正。
2/5+1/4=3/9=1/3
1/6-1/24=4/24-1/24=3/24
3/5+3/10=6/10+3/10=9/10
1/6+1/8=1/14
六、巩固练习
1、做练习十四1
学生各自涂色,并写出得数。
同桌互相检查。
2、做练习十四3、4
指名读题后,学生独立解答。
其中第4题提醒学
生根据要求的问题正确选择条件。
集体交流。
七、课堂小结
通过这节课的学习,你有什么新的收获?
八、作业
练习十四2
教后反思:
本节课的教学体现了“课堂教学以学生为主、以学生的发展为本”的教学理念,主要有以下的特点:
把培养学生自主探究解决问题的能力放在重要的位置,注重发挥学生的主体作用,改善学生的学习方式。
通过已学知识的迁移,为学生探究方法提供可能,课堂中有效渗透转化的思想。
习题的练习既能突出本节课的重点,起到巩固深化的作用,又能发展学生的思维,增长学生的智慧。
五年级数学教学设计 篇3
教材内容分析:
“打电话”所使用的素材是学生所熟悉的,问题和学生的生活经验密切结合,学生对这一问题的研究很有兴趣。“打电话”这一问题正是为学生提供了可探究的空间,学生尝试寻找“答案”时,不是简单地应用已知的信息,也没有可直接利用的方法、公式。尽管不是所有的学生最终都能出色地完成任务,但是他们都尽自己的思维能力“走”得足够远。很有让学生去研究的价值。
学情分析:
这一内容安排在五年级下学期,从生活经验看,大多学生有通知多个人的生活经历,因此,已有的生活经验足以支持完成此任务。其次,从已有知识储备看,参与完成此任务虽涉及画图表达、计算等综合知识,但都是较简单的计算与表达。从思想方法看,在四年级上册的《数学广角》中教材已安排了有关优化思想的学习。因此可以看出“打电话”问题适合五年级学生。
教学目标:
1、利用学生熟悉的生活情境,通过画图的方式,使学生找到打电话的最优方法。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、进一步体会数学与生活的密切联系以及优化思想在生活中的应用,
4、感受猜想与验证的重要性。体会理论上的最优与实践中的最优的区别。
教学重点:
理解打电话的.各个方案并从中优化出最好的方案。
教学难点:
突破“知识本位”,让学生充分经历了解决问题的过程,体会到优化的思想。
教学流程:
一、提出问题
板课题)(谈话引入)今天,我们学习打电话,你会打电话吗?那我看看你们到底会不会?李老师刚接到学校紧急通知,要合唱队的15人去参加演出,怎么可以尽快地通知到这15个队员呢?”同学们帮忙想想办法吧!
(教学预设:这时学生可能出现以下两种情况:1:逐个通知;2:帮忙转告)
这个帮忙转告,怎么个转告法?你想让几个人去转告?没有别的方法了吗?
(设计意图:先让学生想想都有哪些通知的方法.这里有必要引导学生说出两大种方法:平均分组和不平均分组。从平均分组到不平均分组有一个思维跨度,有时学生是不敢想或不会去想。在教学中很有必要锻炼学生的这种发散思维,这也是为等一下的优化方案做铺垫。所以要让学生知道,在想办法时,要大胆地从不同的角度去思考解决问题的方法,这样,我们才能从众多的方法中选出最好的方法。)
猜一猜:哪种方法快?比如平均分成3组和平均分成5组比,哪种快。是不是分的组数越多就越快?我们怎样才能比较出哪种方法最快?
为了更好地研究今天的这个问题,我们假设每一次通话要一分钟,每个学生都在家。那么你估计一下你最少要几分钟?(学生可自由猜测)
(设计意图:猜想一是为了增加趣味性,让学生心中有个疑团,提高探索的欲望。二是要让学生体会验证的必要性。)
二、探索比较
1、每个同学独立思考,把你所知道的方法都列出来,并比较一下,哪种方法最好,想一想,从刚才的比较中,你领悟到什么了没有?
2、教师巡视,参与讨论,了解情况。
3、反馈。学生分别说出自己找到的最好的方法。教师根据学生所说的摆出磁铁。并追问,你刚才比较了几种方法?
(设计意图:让学生把各种方法都列出来,再作比较,经历优化的过程)
方案1要15分钟。这样肯定太慢了。那么用分组的方法怎么样呢?请用分组的同学说说你们的方案。
方案2(1):5组,每组3人(要7分钟)
方案2(2):3组,每组5人(要7分钟)
这两种方案与之前你猜想的结果怎么样?是不是组分得越多就越快?有什么想说的吗?所以在猜想上,我们要大胆,要想出你尽可能的答案,然后再验证。如果每组分的人数不同呢,结果会怎样?
方案2(3):4组(4、4、4、3)(要6分钟)
方案2(4):3组(6、5、4)(要6分钟)
这两种方法与前两种方法有什么不同?为什么时间会缩短?(每个组长都不会闲了)
方案2(5):5组(5、4、3、2、1)(要5分钟)
老师、组长和组员都不闲着,应该怎样设计方案呢?小组讨论,汇报结果。
每分钟通知的人数用不同颜色的笔表示。并让学生讲解。
(设计意图:第二种方案的帮忙转告。汇报时,让学生说说自己都列举并比较了哪几种方案,认为哪种方案最好。只有让学生亲自去比较才能体会到优化的过程,切身体验到优化是怎么一回事。让学生去比较了各种方案,学生也更容易得出各种方案优化的原因,从组长不空闲到老师、组长不空闲,再到老师、组长和组员都不空闲。)
三、探究规律
这的确是个好办法,这个方案,你们发现有什么规律吗?
太棒了!这个同学的发现很了不起。我们不妨用列表的方法,可以看得更清楚一些。
(先出示空表,边问边填完整。)
第几分钟1、2、3、4 接到通知人数1、2、4、8 你发现了什么规律?(预设:第几分钟通知的人数,是前一分钟通知人数的2倍。)
按照这个规律, 第5分钟可以通知多少人?第6分钟可以通知多少人?
2分钟一共通知( 3 )人 3分钟一共通知( 7 )人
4分钟一共通知( 15 )人 你又发现了什么规律?(预设:2分钟通知的人数=2个2相乘-1;3分钟通知的人数=3个2相乘-1;4分钟通知的人数=4个2相乘-1;……)5分钟一共通知多少人?6分钟一共通知多少人? 这样通知50人最少需要花多少分钟?
四、优化方案
同学们用自己的聪明才智,列举出了这么多种方法,你喜欢哪一种方法,你觉得哪一种方法最好?(学生说后)怎样才能比较出哪种方法最好?
板书设计:
打电话
方案1:逐个通知
方案2:帮忙转告
(1) 平均分成3组(5,5,5)——7分钟
(2) 平均分成5组(3,3,3,3,3)——7分钟
(3) 分成4组(4,4,4,3)——6分钟
(4) 分成3组(6,5,4)——6分钟
(5) 分成5组(5,4,3,2,1)——5分钟
五年级数学教学设计 篇4
一、教材说明:
武汉教科院版《信息技术》五年级下册第10课《数学问题巧解答》
二、教学目标:
1、掌握INT取整函数的用法;
2、结合以前所学,实现INI取整函数的综合应用;
3、分层目标:(1)编程实现教材中的实例;(2)更多的综合应用。
三、教学重难点:
重点:掌握INT取整函数的用法。
难点:实现INI取整函数的综合应用。
四、教学准备:
教材中的三个实例程序。
五、教学过程:
1、复习旧知,问题导入(2分钟)
[教师活动]:复习上节课内容,演示取整的功能。
[学生活动]:观察体验。
过程
师:前一课我们学习了PR和TYPE命令,也学会了怎样指挥小海龟来做数学题。今天老师要向小海龟提一个小问题,那就是“10/3=”,看它是怎样解答的。
(演示:(PR 10[/]3[=]10/3),观察返回结果。)
生:结果输出为10 / 3 = 3.33,小海龟将后面的`数省略了,它只保留了2位小数。
师:如果连小数都不需要呢?只需要返回3,该怎样办?我们可以用INT取整函数来实现。
(演示:(PR 10[/]3[=] INT 10/3)),观察返回结果。
生:结果输出为10 / 3 = 3,小海龟将后面的数都省略了。
师:大家不要以为小海龟出错了,而是我们指令小海龟,故意去掉小数。这个取整的功能,很多地方可以利用。用好取整功能,可以让我们的程序实现很多不同的功能。
2、学习新知,感悟方法(20分钟)
[教师活动]:演示完整例子程序,逐句解释,帮助学生理解。
[学生活动]:实践例子程序。
过程
师:演示例子程序,观察效果。
生:测试不同的数。
……
师:观察完整的程序,逐句解释。
TO Z;主过程
MAKE “X READ;读第一个数给X
MAKE “Y READ;读第二个数给Y
MAKE “G :X;将第一个数放到G中
IF :Y<:X [MAKE “G :Y];如果第二个数小于第一个数,则将第二个数放到G中
ZS :X :Y :G;调用ZS过程
END
TO ZS :X :Y :G;子过程
IF AND :X/:G=INT :X/:G :Y/:G=INT :Y/:G [PR :G STOP];关键,用到取整功能,判断能否整除,如果都可以整除,则表示找到最大公约数,输出结果,结束程序。
ZS :X :Y :G-1;自身调用,让G减一。
END
(重点讲解关键语句,将之分解,逐一分析)
:X/:G=INT :X/:G;判断变量:X是否被:G整除
:Y/:G=INT :Y/:G;判断变量:Y是否被:G整除
AND;“并且”的意思,如果没有这句,则表示上面两个条件,有一个满足,就会使程序结束,显然是错误的。
PR :G;用到了前课的知识,输出显示变量:G,就是我们要找的最大公约数。
生:上机实践
……
3、自行探究,拓展运用(15分钟)
[教师活动]:鼓励并引导学生上机实践教材中第二和第三个实例程序。
[学生活动]:动手实践,感悟实例程序,体会取整函数的应用。
4、反馈展示,自我评价(3分钟)
[教师活动]:展示优秀学生成果,引导学生开展自评和互评。
[学生活动]:填写P54页评价表格。
[延伸拓展]:你还能想到更多的取整应用吗?可以利用课余时间,自己动手实践尝试。
五年级数学教学设计 篇5
教材分析
1、在学生认识了自然数和分数的基础上结合熟悉的生活情境初步认识负数了解负数的意义。会用负数表示生活中的问题。
2、教材通过学生熟悉的生活情境如气温中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义。
学情分析
负数这部分内容是今后进一步学习有理数的重要基础。小学生对负数概念比较抽象难以理解。因此在教学中应注意如下几点:
1、要通过生动有趣的`活动和联系实际的素材来渗透负数的概念。
2、要通过实际感知,动脑感悟,小组讨论理解,逐步培养数感,促进认识和理解。
3、教学中应注意加强知识间的联系与区别。
教学目标
知识技能:结合生活实例引导学生初步理解正负数可以表示两种相反的量。过程与方法:使学生经历负数的认识过程,体验观察比较及归纳总结的方法。情感态度与价值观:感受数学与实际生活之间的联系,激发学习兴趣,培养学生动手动脑的良好习惯。
教学重点和难点
重点:在现实情景中理解正负数的意义。突破方法:创设情景,合作探究。
难点:用正、负数描述生活中的现象。突破方法:列举、比较、分析。
五年级数学教学设计 篇6
教学目标
1.通过自主探索、合作交流,自主构建、理解小数的除法计算法则,并能正确地进行计算。
2.使学生在经历探索计算方法的过程中,进一步体会转化思想的价值,感受数学思考的严谨性。
3.通过学习活动,培养对数学学习的积极情感。
教学重难点:
会笔算除数是整数的小数除法、
教学过程
一、创设情境,设疑导入
谈话:同学们,我们学习了小数的加、减、乘以及小数除以整数的除法,今天我们继续研究有关小数的计算。
(出示场景图)在动物乐园里有两只蜗牛欢欢、乐乐正在树林里游戏呢,我们一起去瞧瞧!(呈现:欢欢每小时爬行3米,一共爬行6.12米;乐乐每小时爬行4.2米,一共爬行7.98米。)
提问:要知道谁爬行的时间少一些?要先求什么?怎样列式呢?
根据学生回答,板书:6.12÷3,7.98÷4.2。
再问:你能估计一下,他们各自的时间大约是多少吗?
谈话:它们爬行的时间到底是多少呢,还需要进行精确的计算。先请大家算出欢欢爬行的时间。
学生练习后,提问:怎样计算除数是整数的小数除法?计算时要注意什么?
谈话:那么,怎样求出乐乐的爬行时间呢?
引导:7.98÷4.2和我们以前学过的小数除法算式有什么不同?
揭示课题:除数是小数的除法。
二、合作交流,探索方法
1.探索计算7.98÷4.2的思路。
除数是小数的除法是我们遇到的新问题,能不能把它转化成我们以前学过的知识来解决呢?先请同学们想一想,然后在小组里互相说一说。
学生在小组里活动,教师巡视。
学生中可能出现以下两种情况:
(1)分别把7.98米和4.2米转化成用“分米”作单位的数量,再进行计算;
(2)分别把7.98米和4.2米转化成用“厘米”作单位的数量,再进行计算。
交流第一种思路时,提问:把“米”作单位的数转化成把“分米”作单位的数,就是把被除数和除数同时乘──10。这样就把除数是小数转化成了怎样的除法?(相机板书:7.98÷4.2→79.8÷42)
交流第二种思路时,提问:把“米”作单位的数转化成“厘米”作单位的数,就是把被除数和除数同时乘──100。这样就把除数是小数的除法转化成了怎样的除法?(板书:7.98÷4.2→798÷420)
讨论:上面的两种思路有什么共同的地方?(板书:除数是小数——除数是整数)
追问:这两种转化都是可以的,这样转化的依据是什么?
小结:在数学学习中当面对一个新问题时,我们往往把新问题转化成会解答的旧问题,从而解决新问题。由此看来,转化是我们解决问题的一种重要的.思想方法。
2.探索竖式计算的过程。
通过大家的努力,我们已经把要研究的新问题转化成了自己熟悉的旧问题。那么,怎样用竖式算出结果呢?
提问:如果把7.98÷4.2转化成除数小数的除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的被除数是79.8?(板书)
再问:如果把7.98÷4.2转化成整数除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的除数是420?(板书)
要求:选择一个自己喜欢的一个竖式,算出结果,并和同学交流。
指两名学生板演,评讲并反馈选择每种解法的人数。
提问:转化成798÷420也是可以算的,为什么选择这种转化方法的人很少呢?
小结:请同学们闭上眼睛,我们一起再来把7.98÷4.2竖式的转化、计算过程在眼前展示一遍。你觉得在这个过程中最重要的是什么?
说明:用竖式计算环节,虽然出现了不同的方法,但结果相同。在尊重学生选择的基础上,引导学生通过比较进行算法优化,让学生体会把除数转化成整数的除法算式比较方便。学生在这一过程中,再次体会计算策略,而且经历了由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和算法的切实把握。
三、练习巩固,深化拓展
1.专项练习。
出示:把下列除法式子转化成除数是整数的小数除法,并想一想商的小数点的位置。
让学生说一说每一道题可以转化成怎样的除法算式,商的小数点在哪里。
2.先估再算。
下面各题,请同学们先估一估、再计算,看谁能把每一道题都算对。
出示:
5.76÷1.8= 7.05÷0.94= 0.672÷4.2=
学生练习后,组织反馈。
说明:估算是提高计算正确率的有效方法之一。上面的环节留给学生足够的思维空间,在判断、改错、计算的同时,将估算、验算等方法有机地结合在一起,既有利于培养学生的估算能力、反思能力,获得良好的数感,又有利于学生逐步养成把估算、计算、检验相结合的良好习惯,从而提高计算水平与能力。
4.总结计算方法。
提问:“除数是小数的除法”可以怎样计算?计算时要注意什么?
5.拓展练习。
(1)比一比,看谁算的既快又正确。
0.12÷0.25 0.12÷2.5 0.012÷0.25
提问:你能很快算出上面各题的得数吗?自己先试一试,再把你的算法和同学交流。
学生中可以出现两种算法:① 先用竖式算出第一题的商,再直接写出第二、三题的商;② 把第一题的被除数和除数同时乘4,使除数等于1,并直接用0.12×4算出得数,再直接写后面两题的得数。
着重引导学生理解第二种算法的思考过程,并鼓励学生在计算一些比较特殊的除法算式时,可以根据算式的特点,用比较简便方法进行计算。
小结:计算有时要根据具体问题、题目之间的关系,灵活地进行计算。
说明:在学生理解除数是小数的算理,掌握计算方法之后,安排拓展性练习,引导学生根据具体情况灵活确定计算方法,既有利于培养学生良好的审题习惯和灵活计算的学习品质,又能使不同层次的学生都能得到充分的发展,使计算课充满思维的张力和不断探索的活力。
四、全课小结,回顾反思
提问:这节课你学习了什么?怎样计算除数是小数的除法?为什么要把除数是小数的除法转化为除数是整数的除法?计算时要注意哪些问题?
返回首页