《圆柱的表面积》教学设计
此篇文章《圆柱的表面积》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《圆柱的表面积》教学设计 篇1
教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。
教学目标:
1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。
2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。
3、能正确运用公式计算圆柱的侧面积和表面积。
教学重点:
1、理解圆柱侧面积和表面积的意义。
2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。
教学难点:能正确计算圆柱的侧面积和表面积。
教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。
预习作业:
1、预习课本第21-22页的例2、例3。
2、掌握圆柱侧面积和体积的计算方法。
3、在作业本上完成第22页练一练第1题、第2题。
教学过程:
一、预习效果检测
1、圆柱的侧面积=
2、什么叫做圆柱的表面积?
3、圆柱的表面积=
4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。
二、合作探究
(一)、教学例1
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的'面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
如果知道的是底面半径,怎么算呢?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
根据学生回答板书:圆柱侧面积=底面周长×高
4、练习:完成“练一练”第1题。
(二)、教学例3
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。
算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
(三)、全课总结
这节课我们学习了什么?(板书:圆柱的表面积)
三、当堂达标检测
1、完成练习六第1题。
2、完成练习六第2题。
《圆柱的表面积》教学设计 篇2
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。
(二)核心能力
运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。
(三)学习目标
1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。
2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。
3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。
(四)学习重点
圆柱表面积的计算
(五)学习难点
圆柱体侧面积计算方法的推导
(六)配套资源
实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具
二、学习设计
(一)课前设计
自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。
【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】
(二)课堂设计
1.创设情境,引入新课
师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)
师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?
今天我们就来一起研究圆柱的表面积。(板书课题)
2.探究新知
(1)认识表面积
①回忆旧知
师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?
学生上台演示。
小结:六个面的面积总和是长方体的表面积。
师:正方体呢?
学生自由发言。
②迁移类推新知
师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?
学生操作后,自主发言。
根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积
【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】
(2)探求表面积计算方法
①自主探索
师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?
学生自由发言,
师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。
以小组为单位进行操作活动。
②交流汇报
各小组展示汇报,引导学生互相评价。
预设1:沿高剪开
预设2:沿斜线剪开
预设3:随意剪开或撕开
引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的'面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。
③用字母表示
师:怎么用字母表示呢?
直接计算:S=Ch
利用直径计算:S=πdh
利用半径计算:S=2πrh
④归纳小结
师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。
S表=S侧+2S底
师:要求圆柱的表面积需要知道哪些条件?
练一练:
第21页的做一做。
一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?
学生独立完成后汇报。
师:通过计算,你发现圆柱的表面积和侧面积有什么不同?
引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。
【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】
(3)举一反三,灵活应用
出示例4:
一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)
①理解题意
师:求多少面料就是求什么?
师:“没有底”的帽子如果展开,它由哪几部分组成?
小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。
②独立完成
学生独立完成后交流汇报。
③归纳小结
师:通过计算这道题目,你有什么收获?
引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。
【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】
3.巩固练习
(1)求下面圆柱的侧面积。
①底面周长是1.6m,高是0.7m。
②底面半径是3.2dm,高是5dm。
(2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?
4.课堂总结
师:回顾本节的学习,你们有什么收获?
引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。
(三)课时作业
1.利用工具量出你所需要的信息,计算你手中圆柱体的表面积。
(1)测量的数据
(2)计算过程及结果
《圆柱的表面积》教学设计 篇3
一、设计理念及设计思路。
建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长×高,并能运用公式灵活计算。
数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。
二、教学目标。
知识与技能:
1、理解表面积的含义;
2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。
过程与方法:经历圆柱的侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。
情感态度与价值观:感悟数学知识的能力,体会数学知识之间的相互联系。
重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。
难点:灵活运用侧面积、表面积的有关知识解决实际问题。
教学准备:投影仪,圆柱模型、小剪刀。
三、教学过程。
(一)复习引入。(投影出示)
(1)口答下列各题:
①圆的半径是1厘米,圆的周长是多少?面积是多少?
②长方体、正方体的表面积如何计算。(单位:厘米)
3 3
4 3
5 3
你能算出它们的表面积吗?
(2)引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。
板书课题:圆柱的表面积
(二)探究新知。
(1)圆柱的表面积的含义。
师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流)
学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积
(2)计算圆柱的表面积。
①组织学生将自制的圆柱模型展开分组学习。
②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。
③以长方形为例,指导学生观察联系。长方形的长等于圆柱底面的周长,宽等于圆柱的高。
得出结论:长方形的面积=长×宽
圆柱的侧面积=底面周长×高
师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗?
(3)解决实际问题。
①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米)
②组织学生读题,找出条件,说说实际是求什么问题。分组学习
③学生独立完成计算。
④反馈订正。订正时让学生讲解题思路和步骤及计算结果取近似值的'方法。
强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。
三、课堂小结:圆柱的表面积怎样计算?
四、应用反馈。(独立完成计算)
1、一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
2、广告公司制作了一个底面直径是1.5m,高2.5m的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报?
板书设计:
圆柱的表面积
圆柱的表面积=圆柱侧面积+两个底面积
宽(圆柱的高)
长(底面圆的周长)
圆柱侧面积=底面周长×高
《圆柱的表面积》教学设计 篇4
教学课题:
圆柱的表面积。
教材分析:
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在研究展开后长方形的长、宽与圆柱的关系时,通过让学生在侧面展开成长方形和长方形卷成侧面的活动中,发现长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。从长方形的面积计算公式,推导出圆柱侧面积的计算方法。在探索圆柱侧面积算法的过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。
教学目标:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重点:
圆柱表面积的计算。
教学难点:
圆柱体侧面积计算方法的推导。
教法运用:
本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时通过多媒体的辅助教学,发挥互联网搜索引擎功能,使新授和练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。
学法指导:
采取引导-放手-引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具准备:
圆柱体教具、多媒体课件。
学具准备:
圆柱形纸筒、茶叶桶。
教学过程:
一、检查复习,引入新课
1、复习圆柱体的特征
师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)
1备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。
【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的.空间观念和思维能力得到锻炼。】
三、解决问题,强化认知。
(一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。
(二)根据要求练习。
1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)
2、一台压路机的滚筒宽1、2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)
3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)
根据学生的计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。
讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】
四、课堂回顾,总结提升
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原
3思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。
五、合理利用现代化教学手段辅助教学。
围绕课的重难点及学生能力的培养,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。在教学圆柱表面积含义时动画闪烁圆柱各部分的名称,测量并计算圆柱底面积时动画闪烁圆内直径的测量方法,求圆柱茶叶罐侧面积时呈现茶叶罐侧面包装纸,利用圆柱表面积解决生活中的实际问题时,课件呈现圆柱应用的实物图等等,形象直观,加深了学生对表面积实际计算意义的直观认识和理解,也使学生感受到了数学与现实生活的密切联系。
《圆柱的表面积》教学设计 篇5
教学过程:
一、导入
1、圆的半径是5cm,圆的周长是多少?面积呢?
2、长方形的面积的计算公式是:(说一说,做一做)
3、长方体和正方体的表面积怎么计算的?(小组交流汇报)
4、那么圆柱的表面积该怎么计算?
二、新授
(一)1、出示圆柱实物,师生共同探讨“圆柱的表面积指的是什么?”圆柱的表面积=?(结论:圆柱的表面积=圆柱的侧面积+两个底面的面积)
2、圆柱的底面积你会计算吗?(圆形面积s=πr2)
3、圆柱的侧面积你会计算吗?
①圆柱的侧面是什么形状?(长方形)
②圆柱侧面(长方形)面积=长方形的面积=长×宽,
圆柱侧面(长方形)的'长=?
圆柱侧面(长方形)的宽=?
③圆柱的侧面积=?
(组内观察交流讨论汇报说明理由)
4、小结:圆柱的表面=圆柱侧面积×圆柱的高
(二)一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?(得数保留整十平方厘米)
①求需要多少面料,就是求帽子的……?
②厨师帽是由那几个面组成的?
(三)一个圆柱地面半径是2cm,高是4.5cm,求它的表面积。本题与上一例题有何不同?
三、练习(练习二)
四、总结
通过本课学习你有哪些收获?
五、知识拓展
1、制作一个底面直径是40cm圆柱形水桶,用掉了9420cm的铁皮,这个水桶有多高呢?
2、一座风动力磨坊,高 10m,底面直径 6m,现在要为这座磨坊粉刷涂料,粉刷1平方米需要涂料 2公斤,那么需要买多少公斤的涂料呢?
板书设计:
圆柱的表面积
圆柱的表面积=两个底面的面积+圆柱的侧面积
圆柱的侧面积=底面周长×圆柱的高
教学目标:
1、通过已知长方体、正方体的表面积迁移到圆柱的表面积。
2、在交流中让学生逐步理解圆柱表面积的含义,了解圆柱侧面积与表面积的关系。
3、圆柱表面积=两个底面(圆形)的面积+圆柱的侧面(长方形)面积,在推导过程中使学生们了解到圆柱侧面(长方形)的长等于底面的周长,侧面的宽就是圆柱的高,从而得出圆柱侧面积=底面周长×圆柱的高。
重点难点:
1、理解圆柱的表面积含义,推导计算圆柱表面积,并能正确计算圆柱的表面积。
2、灵活运用圆柱表面积公式,解决生活实际问题。
教具学具:实物展台、圆柱实物、学生自制圆柱模型、生活中的圆柱
预习要求:圆柱的表面积是由哪几部分组成的?怎样计算出圆柱的表面积呢?
教学反思:
在教学过程中师生共同探讨、研究,利用多媒体课件与学生实践操作相结合的方法,很好的使学生理解并掌握了圆柱的表面积的推导和实际应用,完成了本课的预设目标。在今后的教学过程中应该多增加一些实际圆柱物体的表面积的计算和应用,因为学习知识的目的就在于应用。
《圆柱的表面积》教学设计 篇6
教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:圆柱形物体、学具、多媒体课件
教学重点:圆柱侧面积的计算方法推导。
准备:课前布置学生用纸片试做一个圆柱体。
教学过程:
一、交流做圆柱体的情况。
师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。
生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。
生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。
生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。
师:这说明什么呢?
一生抢着说:“原来底面圆的周长等于长方形的长”。
二、探索圆柱表面积的计算方法。
(1)引入
师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?
生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)
师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?
生:把圆柱剪开,变成我们学过的图形。
师:下面分小组探索圆柱的表面积的计算方法。
(2)小组汇报
生1:我们小组把做的.圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2
生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。
师:还有不同方法吗?
生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。
师:这样做的结果是一样的,有什么道理呢?
(生陷入思考)
师:从公式看2个底面圆跑到哪去了呢?
一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。
师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。
师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?
生1:半径或直径和高。
生2:有周长和高也行。
生3:我发现已知周长和高,用第二种方法计算比较快。
师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。
三、自学例3
师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?
(2)什么叫“进一法”?什么情况下要运用进一法?
生1:这个水桶只有一个底面,不能多算成2个。
生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。
师:在一些用料问题上,我们要根据实际情况来考虑。
四、 计算练习(出了3道题)
由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。
反思:
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
(2)立足发展学生的能力,设计课堂教学的策略。
(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。
在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
返回首页