数学六上册教学设计
此篇文章数学六上册教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
数学六上册教学设计 篇1
教学内容:
新课标人教版六年级上册第99~100页。
教学目标:
1、知识技能目标:理解本金、利息和利率的含义,掌握利息的计算方法,会利用利息的计算公式进行一些有关利息的简单计算。
2、情感性目标:在合作与交流的过程中获得良好的情感体验及口头表达能力,感受到生活中处处有数学。
3、实践性目标:学生在调查实践中了解储蓄的意义、种类,培养学生搜集处理信息的能力。
4、体验性目标:让学生在解决问题的过程中,进一步体验数学与生活的联系,增强数学意识,发展数学思维。
(设计意图:关注学生发展,整合教学目标,新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。对于本课的设计,本着新课标的基本理念,“人人都能获得良好的数学教育”,让学生通过对不同存款方式的操作,体验到货币的升值,也感受到不同的存款方式所带来的不同收益,更重要的是让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。)
教学重点:
掌握利息的计算方法。
教学难点:
税后利息的计算。
课前调查:
银行储蓄凭证。
教具准备:
课前搜集的有关利息的信息、多媒体课件、银行存款单、计算器、有关利率表格。
教学过程:
(设计意图:遵循《数学课程标准》的要求,从学生的认识发展水平和已有的知识经验出发,逐步构建起关于外界的知识,从而使自身知识结构将得到发展。为此,本节课的设计根据新课标精神:“重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值”。数学只有与学生生活相联系才能显得真实和精彩。本着这样的理念,所以在课堂设计中利求从学生的实际出发,在课堂中充分让学生“做主”,通过学生积极参与数学活动、独立思考、合作交流、自主地发现掌握本金、利息和利率含义,体会在银行存款时利息的计算方式,从而激发学生学习数学的积极性和学好数学、用好数学的自信心。因此在教学中我遵照以“以学生为本”的思想,共分为四个教学层次,
一、创设情境,生成问题
二、探索交流,解决问题,
三、巩固应用,内化提高
四、回顾整理,反思提升。)
课前自学
1、预习课本P99~100
2、课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。
3、向家长或银行工作人员了解课本上的相关内容。如储蓄的种类,银行存款的年利率、如何填写存款凭条等。
(设计意图:数学知识来源于生活,应用于生活。在学习新知前,先让学生预习课本。增强学生的感性认识,为帮助学生确实学好这部分知识打下基础。让学生分组进行有关储蓄知识的调查,组织学生进行有关的实践活动,培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力)
一、创设情境生成问题
1、开一个关于利率的发布会。
师:我们开一个关于利率的发布会。在调查储蓄的过程中,你搜集到哪些相关的知识?学生分组汇报调查结果,开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;(4)有关调查中遇到的困难、解决的方法和自己的感受。
根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。
(设计意图:情境的创设,不仅充分调动了学生的学习积极性,而且为学生提供了从事数学活动的机会。学生通过课前的调查充分感知储蓄的益处,在不知不觉中学到了知识。以谈话方式导入,为学生创设真实的生活情境,不仅让学生感觉到亲切,而且从课的开始就让学生感受到数学与生活的密切联系,起到了开动思维的作用,使学生乐于参与数学活动。)
二、探索交流解决问题
1、感知利息。
师:近年来,我们沂南县始终坚持富民优先的发展思路,以发展民营经济作为经济发展的主体工程,收到了显著成效。很多人家里都有了暂时不用的钱,你知道他们是怎样处理这些钱的吗?
生:存入银行......
师:人们常常把暂时不用的钱存入银行储蓄起来。那储蓄有什么好处呢?
生:放在银行比较安全;可以得到利息。
师:取款时,银行多支付的钱叫做利息。(板书:利息)
小结:人们把钱存入到银行,国家可以把这部分暂时不用的钱通过多种方式投入到现代建议中去,这样可以支援国家建设,对国家有利,也使的个人用钱更加安全和有计划,还有利息,也可增加一些收入。我们可以这样概括:储蓄利国利民。
学生对于国家如何处理人民存入银行的钱,还有银行付给储户利息会不会亏本这些问题,搞不清楚。教师在这里向学生作一些解释是必要的,也是及时的。
(设计意图:根据学生的生活经验和要求,为了培养学生的.各种能力,尝试大胆地开放教学过程。让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力。)
2、存款的方式。
师:根据国家经济的发展变化,银行存款的利率也在变化。谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。
出示存款凭证条,并让学生说说每一栏表示什么意思,“客户填写”一栏该如何填写,教师根据学生的回答作适当补充。
我们把钱存入银行,银行给我们一个什么凭证,证明你把钱存入了银行呢?
这些存单不仅能证明了我们把钱存入银行,还可以自由存款和取款。
这是老师的一张存款单(课件出示存款单,钱数:1000元、时间:一年、方式:定期),你能从这张存单上得到哪些信息,你是如何理解这些信息的?
学生一般都没有进行过实际的储蓄,多数学生都没有见过存单,所以这里老师把自己的存单展示给学生看,加深学生的感性认识。
学生观察讨论。
我们先来交流一下你能理解的信息。
生:我知道老师是在中国人民银行存的款。
师:你还知道有哪些银行吗?(建设银行,工商银行,交通银行等)
生:我还知道老师存款的方式是定期存款。
什么是定期存款的存款方式?那你知道存款的其他方式吗?
生:整存整取,零存整取,定活两便、活期存款等
生:我知道老师存的是一千元人民币。
师:银行还办理外币储蓄。
(设计意图:传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。联系实际增加学生的感性认识,教材中还给出一张银行用的存款凭条和利息的计算公式,让学生知道在实际生产生活中的简单应用及简单的计算。这样在已有的生活经验的基础上出示一张真实的存款单,给学生一种真实的感觉,从而让学生更加体验到数学的价值。)
3、认识本金、利息、利率;明白利息的计算方法。
通过课前的自学,你知道这一千元就叫……?对,我们把存入银行的钱叫做本金。
生:我还看到利率是百分之二点二五。
你知道什么叫利率吗?
利息/本金=利率(老师板书)
师:同学们手中都有一张利率表,大家看看。同桌之间说说你看到了什么?
关于利率,你们还知道什么?
………
师:同学们了解的还真不少,你们能帮老师算算到期后老师可以得到多少利息?该如何计算呢?
生:“利息/本金=利率”。我还知道:利息=本金×利率。
师:既然大家已经知道了怎么样计算利息了,大家就来帮助老师计算一下,一年后我能得到多少利息?
师:如果我要存定期二年能得到多少利息,该如何计算?引起学生的知识需求,产生探究欲望。
学生可能出现下面三个算式:
1)20xx×2.25%×22)20xx×2.70%×23)20xx×2.70%比较三个算式:
1)2.25%是一年的年利率,2.70%是定期二年的年利率
2)让学生说说自己的看法。
生1:定期二年得到的利息等于本金乘二年期的利率。
生2:利率是“年”利率,利息的多少还与时间的长短有关,应该再乘时间。
师把公式填写完整:利息=本金×利率×时间(板书:×时间)
小结:存款选择的时间不同,利率也不同。计算时一定要选择与存款时间相对应的利率。
(设计意图:完全放手让学生通过自主探究、合作交流的方式,完成新知的学习。这样为学生创设了思维的空间,探究的空间,交流的空间,注重了让学生经历知识的产生过程,即培养了学生的自学能力,又培养了学生的合作意识,即学会倾听又学会表达。)
4、学习利息税知识:
师:大家都算出了我应得的利息,但实际上我并不能得到你们算出的利息,你们知道为什么吗?
教师课件出示,国家规定:存款的利息要按20%的税率纳税。哪位同学能解释一下?
生:要扣除利息所得税,要扣除20%的利息所得税。
师:那老师到期后能得到多少税后利息呢?
学生计算后小组交流,生列式计算,允许用计算器。
然后归纳公式
税后利息=本金×利率×时间×(1-20%)(板书)
教师及时向学生进行要长大以后要做一个依法纳税的好公民。关于税后利息的计算最好还是建议学生用分步列式计算,先求出税前利息,再求出应纳税额,最后再求税后利息,这样有利于学困生掌握,而且还利于学生弄清每步求的是什么,同时在遇到求应纳税额时,学生才不会混淆。
小结:在计算时,要看清求的是利息还是税后利息,再灵活计算。
(设计意图:在引导学生探究学习的过程中,层层分析含义、比较数量关系,从而弄清“利息”的初步知识,知道“本金、利息、时间、利率”的关系,巧妙突破教学难点。让学生运用所学知识解决实际问题,在解决实际问题的同时,提高学生灵活运用知识的能力,同是针对利息税,进行公民要依法纳税的教育,提高学生的纳税意识。)
(设计意图:学生各种能力的形成和发展是我们教学的首要任务。学生在自主探索和合作交流中,对知识的理解与把握非常深刻。为了使学生对本课时的教学内容得到巩固和加深,提高综合运用所学数学知识解决简单的实际问题的能力,我在教法上注重课堂教学的灵活性、科学性。联系实际增强学生的感性认识,抓住各知识的细节性、过渡性、完整性进行教学,同时、采用自主探究、观察、对比、独立思考、小组合作交流、动手操作、汇报演示等学习策略激发学习动机,促使学生肯学、会学、善学,让学生在动手做一做、说一说的学习过程中培养学生的概括能力,把握并突破重、难点,获取新知。引导学生积极参与学习过程,促进学生数学概念的形成和数学结论的获取。教学中还注重沟通师生的情感因素,面向全体学生,充分调动学生的积极性,使所有学生都能在数学学习中增强克服困难的勇气和毅力,提高学习数学的兴趣。)
三、巩固应用内化提高
1、基本应用:
(1)、例题:王奶奶要存1000元请你帮助王奶奶算一算存一年后可以取回多少钱?(整存整取一年的利率是2.25%)。
在弄清以上这些相关概念之后,学生尝试解答例题。
在学生独立审题解答的基础上订正。
板书:
方法一方法二
1000×2.25%×1=22.50(元)1000×2.25%×1=22.50(元)22.50×20%=4.50(元)1000+22.50×(1-20%)
1000+22.50-4.50=1018(元)=1018(元)
答:一年后王奶奶可以取回1018元。
师:我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。王奶奶存1000元1年,到期利息22.50元,应缴纳利息税22.50×20%=4.50元,这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1018元。
(2)、学生完成第100页的“做一做”。下面是张叔叔到银行存款时填写的存款凭证。到期时张叔叔可以取回多少钱?
四人小组互相检查对方的计算是否正确。选一到二位同学(实物投影交流)
这里既是一种实践应用,也是对学生课前作业的照应,体现了教学设计的完整性,又使学生通过解答,达到了灵活运用知识的能力。
(3)、102页第
6、7题,学生尝试计算后,交流。完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。
2、综合应用
(1)、王大爷在20xx年1月1日把10000元定期存款二年,可是在20xx年8月1日,急需用钱,你帮王大爷出出主意,该怎么办呢?
让学生明白,如果定期存款中途取时,只能按活期算
生:可以先向别人借钱,等存款到期后,再归还借款。
生:可以用存折作抵压,从银行贷款,然后等存款到期后,再归还借款。
这里是本课的高潮所在,学生灵活运用自己所学知识或已有的生活经验解决实际问题。
(2)、课后实践、体验储蓄过程
师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,存入问题银行,我们下节课继续交流讨论。
(设计理念:针对学生差异,实施多元评价。我精心设计练习,让学生用合作学习的方式运用所学知识解决实际问题,提高学生的实际运用能力。第二个层次的练习设计为实践延伸,对学生提出具有挑战性的要求,让学生获得实践体验,感受到所学的知识能运用于生活。体会到在实际生活中要根据个人的不同需求,选择适合自己的款方式,体验到不同的存款方式带来的不同益处。课后要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。)
四、回顾整理反思提升
通过本课的学习,你有什么收获?
(设计理念:《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。)
板书设计
利率
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
(设计意图:板书设计为学生提供直观性的顺思维与逆思维两种形式,使学生一目了然,并能依据板书归纳和小结本课时所学的内容。)
数学六上册教学设计 篇2
设计说明
本节课呈现的是笑笑家的家庭支出情况,所以课前让学生了解生活中有关百分数的知识,以激发学生的学习兴趣,让学生在调查的过程中,接触到更多的实际生活中的百分数,认识到数学在生活中的广泛应用。在教学过程中,利用教材提供的情境,使学生从中了解百分数与现实生活的联系。让学生在讨论、交流解题过程与方法的过程中提高学习数学的'兴趣和积极性,同时在讨论、交流中拓展学生的思维,让学生综合运用所学知识解决实际问题的能力得到提高。
课前准备
教师准备PPT课件课堂活动卡
学生准备课前收集的生活中有关百分数的知识
教学过程
⊙直接导入
前面的学习,我们已经体会到了百分数与现实生活的密切联系。请同学们想一想,生活中还有哪些方面能用到百分数?
设计意图:开门见山,直接导入,既让学生瞬间回顾了前面所学的知识,又为本节课的学习制造了一个积极动脑的气氛,让学生能快速地进入到探究新知的学习中来。
⊙自学探究
课件出示例题。
笑笑家20xx年食品支出总额占家庭总支出的55%,其他支出总额占家庭总支出的45%。食品支出比其他支出多620元。笑笑家的家庭总支出是多少元?
师:例题呈现的就是生活中用到百分数的事例,请同学们自由读题,理解题意。
1.自学指导。
(1)尝试画线段图分析题意,找出等量关系。
(2)选择合适的方法解决问题。
(3)你还有其他的方法吗?
2.学生独立探索解题方法,教师巡视指导。
3.引导学生对比教材93页的方法,梳理自己的解题思路。
4.与同桌交流自己的解题方法。
5.展示解题过程。
(1)指名板演解题过程。
方法一解:设笑笑家20xx年的总支出是x元,那么食品支出是55%x元,其他支出是45%x元。
55%x-45%x=620
10%x=620
x=6200
方法二620÷(55%-45%)
=620÷10%
=6200(元)
答:笑笑家的家庭总支出是6200元。
(2)其他学生提出自己的疑问。
预设
生1:为什么设笑笑家的总支出是x元?
生2:“55%-45%”表示什么意思?
生3:为什么用“620÷(55%-45%)”呢?
设计意图:通过自学指导学生独立探索解题方法;给学生充分的自学空间,利于学生发散思维的培养;解决问题后对照教材,不仅能验证自己的解题思路是否正确,而且也完善了自己的思考过程,与同桌的交流更优化了自己的思考过程。
数学六上册教学设计 篇3
单元导学
本单元的主要内容有:根据方向和距离在平面图上确定物体的位置;描述简单的路线图;绘制简单的路线图。
学生之前所学的用数对确定平面图上物体的位置是平面直角坐标系的雏形,而用方向和距离确定平面图上物体的位置则是极坐标系的雏形。这些内容的学习,有助于发展学生的空间观念,为学生将来进一步学习,平面直角坐标系、极坐标系和空间坐标系打下良好的基础。
通过第一学段的学习,学生在日常生活中已经积累了一些确定位置的感性经验,已经能够根据上、下、前、后、左、右和东、南、西、北、东北、东南、西北、西南等方位词描述物体的大致位置,能够利用数对精确地表示出平面图上一个点或一个区域的位置。本单元在此基础上,让学生学习根据方向和距离确定物体的位置,并描述简单的路线图,使学生进一步从方位的角度认识事物,更全面地感知和体验周围的事物,发展空间观念。
备内容
备目标
知识与技能
过程与方法
情感、态度与价值观
1.会根据平面图上一个点的位置说出它相对于观测点的方向和距离。
2.会根据一个点相对于观测点的方向和距离确定这个点的具体位置。
3.会描述简单的路线图。
1.经历位置与方向的'观察、测量、画图、描述等过程,感受从实践中学习的策略和方法。
2.通过让学生想象出物体的方位和相互之间的位置关系,培养空间观念。
3.通过用方向和距离来表示平面图上一个点的位置,初步感受坐标法。
通过生活实例学习位置与方向的知识,感受数学与生活的密切联系,学会在生活中应用数学。
备重难点
重点
1.掌握根据方向和距离确定物体位置的方法,能根据描述在平面图上标出物体的具体位置。
2.能描述并绘制简单的路线图。
难点
1.能根据描述在平面图上标出物体的具体位置。
2.能根据描述绘制简单的路线图。
数学六上册教学设计 篇4
教学目标
1.依据小数、分数和百分数的意义,引导学生开展自主探索,理解和掌握将分数、小数化成百分数的方法。
2.会解决求一个数是另一个数的百分之几的问题。在求命中率的基础上,理解更多生活中的百分率的实际含义,感受百分率在生活中应用的广泛性。
3.进一步明确百分率与分数的联系和区别,培养学生比较分析、归纳概括的思维能力。
重点:
掌握小数、分数化成百分数的方法。
难点:
理解生活中百分率的实际含义。
教学过程
课件出示教材第84页主题图。
师:王涛和李强是各自篮球队的主要得分手。在一场比赛后,他们之间有这样一段对话,从图中你能获得哪些信息?
生:王涛是5投3中,李强是6投4中。
师:根据这两条信息,老师想知道谁的投篮更准,该怎么比较呢?学生计算,指名回答。
生1:3÷5=,4÷6≈,因为<,所以李强的投篮更准。
生2:3÷5=,4÷6=,因为<,所以李强的投篮更准。
教师:这两种算法有什么相同的地方?(算式相同)都是求什么?(命中率,即投中的次数占投篮总次数的几分之几)有什么不同呢?(一个是用小数表示结果,一个是用分数表示结果。)
1.揭示命中率。
师:这种计算的方法,与篮球比赛技术统计中的投篮命中率类似。请从百分数的意义出发进行思考,什么叫“投篮命中率”?(投篮命中率表示投中次数占投篮总次数的百分之几。)
师:该如何计算呢?(投篮命中率=。)
师:这个题目的问题是“他们两人的命中率分别是多少?谁的命中率高?”。
2.小数、分数化成百分数。
师:投篮命中率是一个什么数?(百分数)你能把刚才的两种运算结果转化成百分数吗?(学生练习,指名回答。)
生1:3÷5===60%。
师:你是怎么做的?(把小数化成分母是100的分数,再化成百分数。)
生2:3÷5====60%。
师:4÷6除不尽,怎么办?(除不尽时,通常保留三位小数。)
生:4÷6≈==%或4÷6=≈=%。
师:你能解释这里的“≈”和“=”符号的用法吗?(4÷6除不尽,保留三位小数约等于。然后把这个小数转化为分母是1000的分数。)
师:这样我们已经分别计算出了两个人的命中率,谁更高些?(李强。)
3.引导归纳,得出方法。
课件出示=%。
师:你能理解这样的表示方法吗?(把小数点向右移动两位,再加上百分号。)
师:把小数点向右移动两位意味着什么?(把这个数扩大了100倍。)
师:加上百分号意味着什么?(把这个数缩小了100倍。)师:我们一起来归纳将小数、分数化成百分数的方法。
引导式总结:把小数、分数化成百分数,可以化成分母是100的分数,(不能转化的保留三位小数)再化成百分数;
也可以先将分数化成小数,(除不尽的保留三位小数)再将小数点向右移动两位,加上百分号。
师:刚才我们计算的投篮命中率,表示投中次数是投篮总次数的'百分之几。可以表示成投篮命中率=×100%的形式。为什么要“×100%”呢?预设:因为求的是百分率,要用百分数的形式表示。在后面添上“×100%”确保结果是百分数的形式。
师:在实际生活中,像上面这样常用的百分率还有许多。如学生的出勤率、绿豆的发芽率、产品的合格率、小麦的出粉率、树木的成活率等。你能表示出求这些百分率的式子吗?(学生练习,指名回答。)
小结:百分率表示一个数是另一个数的百分之几,它在我们生活中的应用非常广泛。
1.生物小组进行玉米种子发芽试验,每次试验结果如下:
试验次数试验种子数发芽种子数/粒发芽率1 300 285 2 300 282 2 300 294 4 300 291 ?师:从结果中我们可以直接看出哪一次实验的发芽率最高?哪一次最低?(让学生感受百分率的实际作用。)
2.把下面的小数和分数改写成百分数。0.3.你能联系实际说一说哪些百分率不可能达到100%,哪些可能达到100%,哪些可能超过100%吗?通过这节课的学习,说说你有什么收获?还有什么疑问?教学反思根据学生已有的知识,放手让学生自主探究小数、分数化成百分数的方法。在整个教学活动中,利用教师的合理揭示、适时点拨、引导归纳,使学生的探究活动呈现出较强的层次性。这样的过程既符合学生的思维特征,又有利于知识的理解和掌握。通过分析各种百分率所表示的意义,不仅使学生体会到这一知识在生活中的广泛应用,也对求百分率的方法有了更为深刻的理解。
数学六上册教学设计 篇5
教学目的
1、通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
教学重点:圆面积计算
教学难点:公式以及推导。
教学过程
一、复习并引入课题。
1、口算:2π 9。42÷π 12。56÷π
2、已知圆的半径是2。5分米,它的周长是多少?
3、一个长方形的长是6。2米,宽是4米,它的面积是多少?
4、说出平行四边形的面积公式是怎样推导出来的?
5、出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?
课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。
二、新课讲授
1、圆的面积的含义。
问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2、圆的面积公式的推导。
问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)
问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)
教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
强调:如果分的等份越多所拼的图形就越接近长方形。
问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)
引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?
学生独立完成圆面积公式的推导:
总结:我们用S表示圆的面积,那么圆面积的大小就是:再次强调:
(1)拼成的图形近似于什么图形?
(2)原来圆的面积与这个长方形的面积是否相等?
(3)长方形的长相当于圆的哪部分的长?
(4)长方形的宽是圆的哪部分?
(5)用S表示圆的面积,那么圆的面积可以写成:S=πr2
3、圆面积公式的应用。
师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?
学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?
(学生独立完成,教师巡视,对有困难的学生给予辅导。)教师板演计算过程。
出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?
问题:你能利用内圆好外圆的面积求出环形的.面积吗?
学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表
回答问题,在黑板上演示计算方法,集体纠错。)
三、巩固练习。
1、根据下面所给的条件,求圆的面积。
半径2分米。
直径10厘米。
(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
(2)强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。
四、课堂小结
总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!
另外,我们在前面也学习了如何求圆的周长,需要注意的是:
(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。
(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;
(3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书
圆的面积
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr
数学六上册教学设计 篇6
设计说明
著名教育家叶圣陶先生曾经说过“教是为了不教”,这是学校教育的至高境界。可是,怎样才能达到这样的境界呢?只有真正地转变教学方式和学习方式,在教学活动中做到师生平等,让课堂属于学生,才能进行高效率的学习,才能走近最理想的教育。本教学设计以探究学习为主,让学生自主地发现问题,解决问题。教师创设一个以“学”为中心的交往环境,让学生通过合作探究来解决问题。要鼓励和帮助学生探究解决问题的方法,寻找答案。
1.教学中鼓励学生发现并提出问题。
引导学生观察情境图,充分交流从图中获取的数学信息,鼓励学生根据信息提出问题,组织学生对不同的问题进行讨论、交流,激发学生继续探究的欲望。
2.教学中注重解题方法与策略的指导,提高学生自主探究问题和解决问题的能力。
教材问题情境中呈现的信息多样,有文字信息、图画信息、干扰信息和可用信息。教学中,教师要做学生学习的组织者和引导者,引导学生自主阅读、选择、处理信息,排除干扰信息,并尝试用数和数量表示有关信息,用语言提炼问题情境和问题,实现“问题情境”向“数学问题”的转化。
课前准备
教师准备PPT课件学情检测卡
教学过程
复习旧知
1.口算下面各题。
8×3=8×4=4×8=
5×8=8×8=8×6=
8×2+8=8×7+8=8×3+8=
2.让学生在黑板前站成4组,每组2名,引导其他学生算一算,黑板前一共有多少名学生?
设计意图:准确地复习表内乘法和进行乘加两步混合运算的训练,有利于对旧知的巩固。利用创设的情境解决简单的实际问题,为学习新知作铺垫。
激趣导入
同学们,你们去文具店买文具的时候,留心过文具的价钱吗?(课件出示教材78页例3情境图)
1.观察交流:从这幅图中你获取了哪些数学信息?(观察情境图,同桌之间交流不同文具的价钱)
2.设疑引入:“文具盒8元”是什么意思?(一个文具盒8元)买3个文具盒要花多少钱呢?这节课我们就一起来运用所学的知识解决问题。(板书课题)
设计意图:设疑激趣,引导学生通过观察情境图提取数学信息,并有条理地整理信息。初步理解物品的单价,激发学生的探究欲望,为后面学习解决问题作铺垫。
探究新知
1.提出问题。
从图中你发现了什么数学问题?(买3个文具盒,一共多少钱?)
2.分析问题。
要解决“买3个文具盒,一共多少钱?”这个问题,应知道什么数学信息?(应知道“文具盒8元”这个数学信息)
设计意图:引导学生排除干扰信息,学会提炼可用的已知条件,为学生在以后的`学习中学会搜集可用的信息作铺垫。
3.根据乘法的意义解决问题。
怎样解答呢?先独立思考,画一画、写一写,然后同桌之间交流。(我们知道买1个文具盒8元,就是1个8,买2个文具盒就是2个8,买3个文具盒就是3个8。要求买3个文具盒一共多少钱,就是求3个8是多少,根据乘法的意义,求几个几是多少可以用乘法计算)
师:怎样列式呢?想一想用的是哪句乘法口诀。[8×3=24(元)或3×8=24(元),用的乘法口诀是三八二十四]
4.回顾解题过程。
让学生在小组内完整地说一说这道题的信息和问题,以及要解决这道数学题应选取哪些可用的数学信息,怎样列式和用哪句乘法口诀计算。(小组内交流,然后选代表汇报)
设计意图:通过画一画、想一想、算一算、说一说等活动让学生学会运用画图法来分析数量关系。学生通过交流、探究明白解决这种类型的问题用乘法计算的道理,为初步建立数学模型奠定基础。
返回首页