《除数是小数的除法》教学反思
此篇文章《除数是小数的除法》教学反思(精选6篇),由智远网整理,希望能够帮助得到大家。
《除数是小数的除法》教学反思 篇1
我讲了一节《小数除法》,在备课的时候,我将教材小数除法的意义先讲了。因为我想,小数除法的第一课时算理是比较难的,应该将重点放在算理上。小数除法的意义在学整数除法的意义的时候已经有所感知,只需要拿出一点时间复习一下就可以了!
在教学的时候,对于教学安排的改变是这样的:教材上安排的第一课时要教学除数是整数的和除数是小数的小数除法两个例题!我觉得,两个例题一起讲不太合适,学生应该先学除数是整数的小数除法,这部分知识是除数是小数的小数除法的基础,学生不但要会算,还要熟练的掌握才行!因为是基础,我把除数是整数的小数除法中的几种情况都放在一起讲了:一般情况、整数部分商0的,小数部分十分位、百分位不够除用0占位的,整数除以整数商是小数的,以及除到被除数的末尾不够除,根据小数的性质添0继续除的。学生在这样地教学安排中,可以循序渐进地一步步熟悉除数是整数的小数除法!这种教学内容的改变,在课堂中,比较适应学生的学习,取得了良好的效果!这次视导,我最大的收获就是将教学内容根据学生的情况进行了适时适度的.调整。这样做,做到了以学生为本!
教学计算的课比较枯燥的,要把比较枯燥的课上得有趣,我也是动了一番脑筋,首先是从学生熟悉的生活实际入手,,已经进入了新课的内容!学生在学习新课的时候,我还是本着学生会的不教,让他们先尝试,在尝试的过程中,发现问题,提出问题,大家一起解决问题!学生提出问题后,让会的学生先解答,在解答的过程中不断地有人提出新的问题,大家一起解决,在比较困难的地方,教师要发挥自己的主导作用,比如在说计算过程的时候,教师先问:“先从被除数的哪部分除起?”区分了整数与小数除法的不同!在不够商1的时候,要怎么办,把问题推给学生,学生根据以前的知识,迁移类推,就总结出了“不够商1,0占位”,在教学除到被除数的末尾仍有余数+的时候,学生就出现了两种答案,一种是除到末尾有余数,一种是添0继续除!两方的学生开始辩论,说出自己的理由,在学生的争辩中,学生学会了计算这样的除法!
但有学生也提出了的一些看法,比如,班里有一个学生因为没有带尺子,我批评了他,后面他的学习就有点闷闷不乐!,关注个别学生的情感变化的这个过程,我还是做的不够!
在今后的教学中,我还要大胆地合理使用教材,设计适合学生的教法。这是我在教学后的一些反思。
《除数是小数的除法》教学反思 篇2
今天上午我在辅导班带的一对四,用了二十分钟简单的给他们讲了这一课,教学中发现了一些问题值得反思。
昨天晚上备课,从网上找到五年级上册的教参,单元末尾正好有这一课时的教案,遂抄了一遍,又看了几遍,揣摩了一下。今天在讲课中发现还有一些可学之处。
1.复习引入,出示几道除法算式,其中包含一道224÷4,这与教材例一会出现的算式22.4÷4相似,一起对比,前面是整数除法,后面是小数除以整数,引出课题。后面教学时,用这两道除法竖式对比,哪些地方相同,哪些地方不同,让学生讨论后回答:除的方法基本相同,不同的是在做22.4÷4时,商的小数点要和被除数的小数点对齐。把两道竖式放在一起比较,增加了学生思考的环节,让学生自己把结论说了出来。
2.教学环节非常仔细,一环扣一环,师生互动比较多,这一点也是值得学习的。
3.小数除法竖式中讲解每一步讲解都非常仔细,首先盖住小数点后面的4,用22÷4余2,问学生余的2是什么意思(表示2个一),然后把4露出来,把小数点后面的4写在余的2后面,再问这个24表示什么(表示24个十分之一),用24个十分之一除以4,每份应该是多少呢(每份应该是6个十分之一)怎样在商上面表示6个十分之一呢(在6的前面点上小数点)
上这节课的反思:
1.周末学生比较放松纪律需要加强
2.在讲到24个十分之一时,学生不容易理解,但能懂得小数点后面的4代表4个十分之一,我讲解的时候是这样的,24:2写在4前面表示20,既然4代表4个十分之一,组合在一起就是20+4,就是24个十分之一。
关于人教版五年级上册《除数是整数的小数除法》的教学反思
3.再讲商的小数点和被除数的小数点对齐的`时候,引导学生观察商的小数点和被除数的小数点自己发现规律,记忆非常深刻。在后面的做一做中,也几乎没出现忘点小数点和点错小数点的问题。
这节课,让我认识到备课的重要性,还有就是现在不在学校上课的时间少了,在课堂上的发挥感觉没有以前熟练了,这是要改进的。
《除数是小数的除法》教学反思 篇3
出示例4
解决问题(1)每千克苹果多少元?
1.估一估
苹果的单价大约是多少元?为什么?香蕉和橘子的单价呢?
你是怎样估计的?
2.启发
你能算出9.6÷3的商是多少吗?试试看。
学生尝试计算,师巡视。
选择几种典型的算法指名板演。
3.集体交流
让板演的学生分别介绍自己的做法。
4.小结
相机板书完整的竖式计算
追问:
商的小数点为什么要和被除数的小数点对齐?
反思:
数学课程标准指出:
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的.过程中真正理解和掌握基本的数学知识与技能。
这部分的教学内容是小数除法计算中最基本的知识。教学中,我设计了适合学生发展的过程,充分利用学生原有整数除法计算的知识,顺利迁移学习本课的新知识。启发学生用已有的知识和经验自主探索,解释竖式计算的过程。通过与他人交流思维的过程和结果,体验解决问题策略的多样性。在集体讲评时重点突出了商的小数点要和被除数的小数点对齐这一知识点。让学生经历探求知识的全过程,充分体会数学与日常生活的联系,体验到了成功的喜悦,进一步激发了学生学习数学的兴趣,增强学生学好数学的自信心。同时也为下面进一步学习小数除法的知识积累经验,作好铺垫。
《除数是小数的除法》教学反思 篇4
【摘要】除数是小数的除法是小学数学第九册第二单元的教学重点,它与除数是整数的除法联系密切,但是受思维定势的影响,学生在实际操作中却出现了许多的问题。本文就学生掌握的知识情况及教学效果进行多方面的分析和反思。
【关键词】小数除法小数的性质教学反思
作为已有10年教龄的我来说,在还没学习这一单元时,我认为该小节比较简单,学生应该很容易掌握,因为它和除数是整数的小数除法联系密切。除数是整数的小数除法是学生已学过的知识,而除数是小数的除法是学生即将要学习的新知识,这节课的主要目的是让学生把新知识转化成旧知识,从而形成知识的系统性。为了让学生能自主探索,形成思维的碰撞,我在教学中尝试放手,再次计算,反思总结等方法,虽然这节课有旧知识的味道,但学生在实际操作中却出现了许多的问题。
在由情景入课引出除数是小数的除法后,我放手让学生独立思考尝试,但在巡视中发现学生对于这样的.“放”毫无立足点,问题在于我的“放”没有建立在实际基础上。这一课的重点是要让学生尝试把除数是小数的除法转化成除数是整数的除法来解决,尽管我在学生思考了一分钟后,给出:你能把除数变成整数来计算吗?这样的提示,但是只有很小一部分学生能理会,更多的学生只是在随意猜测。虽然在课前我有意识地让学生回顾上节课学习的类型(除数是整数的小数除法),但这种交流仅是一带而过,学生无法理解这种回顾的目的,下面就我对这一课的教学内容进行简单的分析。
如:例5文文的奶奶编一个编中国结需要0.85米丝绳,文文拿来的7.65米丝绳可以编几个中国结?
这题主要是根据商不变的性质,把除数和被除数同时扩大到原来的100倍,使除数变成整数来计算。为了便于理解,我通过横式移位练习和竖式移位练习说明怎样把除数变成整数,并且通过原来的竖式说明简便的方法,即划去除数的小数点和前面的0、被除数的小数点,说明除数和被除数都扩大到了原来的100倍,小数点都要向右移动两位。
1、横式移位练习:提示学生能否把题里的米转变成用厘米作单位来进行计算。
2、又如:例6计算12.6÷0.28先让学生联系例5的计算方法,当学生发现被除数和除数同时扩大到相同的倍数时被除数的位数不够,着重说明划掉除数中的小数点使除数变成整数,要注意除数的小数点向右移动几位,被除数的小数点也要相应地移动几位,位数不够就用“0”来补。
3、在一些题目中,除数扩大到一定的倍数变成整数后,被除数仍然是小数,如2.73÷1.3从题目中不难看出,它其实就转变成了除数是整数的小数除法,扩大后利用除数是整数的小数除法法则就能求出商。
以上的讲述我自认为针对性很强,但在课后练习中却发现学生往往会出现这样或那样的错误,特别是受思维定势影响的“规律性错误”。数学教学应该是把抽象问题具体化,并用多种的思维方式分析它,用数学方法解决它,从中获得相关的知识与解题能力,形成良好的思维习惯,感受解决了数学问题的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。但通过作业情况的反馈来看,学生对于除数是小数的除法出现错误的地方还是比较多,主要表现在以下几个方面:
1、不能正确地移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点,或者移动的位置与除数不一致(如1.89÷0.54=18.9÷54)。虽然他们知道除数与被除数的小数点移动是根据商不变的性质,但是他们在做作业的时候就忘了。
2、在完成竖式的过程中,出现了把商的小数点与被除数原来的小数点对齐的现象,这也是造成部分学生计算错误的原因之一。
3、用除数是整数的小数除法法则进行计算时,除到哪位商哪位,不够时先在商的位置上写“0”,再拉下一个数,学生困难较大,中间“0”常常忽视。
4、除数是小数的除法笔算后,学生验算的错误非常多,原来我们以前学的除法竖式,被除数、除数没有发生任何改变,验算时只要直接用商×除数=被除数即可。可是除数是小数的除法在计算时首先需要利用商不变的性质,把除数是小数的除法转化为除数是整数的除法,再进行笔算。验算时学生受到前面知识的影响,会用转化后的除数×商=转化后的被除数,这样验算很不科学,如果学生在第一个转化整数环节中出错,验算就起不到作用。因此,正确的验算方法是将原题中的除数和商相乘是否等于原被除数。
5、学生在处理商的小数点时受到小数加减法的影响,把除数转化为整数,有的被除数不变、有的移动小数点的位数不同,有的把被除数转化成整数,从而造成计算错误。
在教学过程中,一切要从学生已有的基础出发,让学生成为学习的主人,激发学生的学习积极性,给学生提供充分的数学思维活动空间,帮助他们掌握基本的数学知识、技能和方法,获得丰富的数学活动经验。同时,把题目的困难逐步分解,减轻学生的运算困难,激发学生对数学的学习兴趣,增强学生的成就感。
【参考文献】
[1]《小学数学课程标准》,北京师范大学出版社,20xx
[2]五年级上册数学教师教学用书,人民教育出版社,20xx
[3]《数学课程标准解读》,刘兼、孙晓天主编,北京师范大学出版社,20xx
《除数是小数的除法》教学反思 篇5
除数是小数的除法,是一节计算课,算理的理解、竖式的写法都是学生第一次接触。本节课如果按照教材的顺序教学,学生就会学得很枯燥,教师也会很疲惫,算理的理解不会很透彻,计算也不会扎实。要避免这些弊端,就要合理地设计教学,精心预设学生的想法。结合我自己在准备这节公开课的过程中的实践经验,我有以下两点想法。
一、合理设计——把握重、难点才是关键。
除数是小数的除法,是小数除法中的难点。它安排在整册教材的第九单元小数乘法和除法(二)中。虽然教材把这个内容安排在小数乘小数之后,但是这部分内容的基础是除数是整数的除法,除数是整数的除法学生已经学过了,还是比较容易掌握的。如何把新知与旧知联系起来呢?商不变的规律就是沟通新旧知识的纽带。利用商不变的规律,就能把除数是小数的除法“转化”成除数是整数的除法。这是教学本节课内容的一个重点,也是难点。在理解了算理以后,在竖式中进行转化是学生学习过程中的又一重点、难点。
基于这些,我在教学设计中就安排了这样几个层次
1、复习旧知:商不变的规律;除数是小数的除法引入。
2、出示例题并列式7.98÷4.2,与复习中的算式比较,发现除数是小数了,引出新问题。
3、合作探索:你会用学过的知识解决这个新问题吗?得出“转化”成除数是小数的除法;练习体会“转化”。
4、师生共同得出如何在竖式中表示出“转化”的过程,并完成竖式;练习在竖式中转化;练习计算除数是小数的除法。
5、小结计算除数是小数的除法的计算方法。
只有在把握了教学的重点、难点之后,才能合理地、一层接一层地设计教学,才能很好地实现教学的有效性。
二、精心预设——错误也是有效的教学资源。
第一次设计学生合作探索时,我预设了学生可能出现的几种做法
1、转化成798÷42;
2、转化成角来计算;
3、转化成79.8÷42;
4、转化成798÷420。
但是在实际试上的时候,大多数同学的.做法是第一种,几个同学能想到第三种,没有人能想到第二种、第四种。针对这样的情况,我就设想能不能让学生抓住第一种错误的做法进行分析,思考:“转化成798÷42算出的结果会和7.98÷4.2的结果一样吗?”然后再让学生说别的想法。结果按照这一思路试上后,学生很自然地用商不变的规律来说明这样转化是错误的,并有更多同学想到了要转化成79.8÷42,还有同学想到了转化成798÷420。学生在审视错误的过程中强化商不变的规律,并自然地得出正确的转化方法,这不正是我所希望的吗?这一过程这样处理后,学生对于“转化“的依据印象更深,也理解了除数是小数的除法的算理:要把除数是小数的除法转化成除数是整数的除法。
《除数是小数的除法》教学反思 篇6
一、把握知识内在联系,找准新知识的最佳生长点
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据214.5÷15=14.3,利用商不变的规律直接写出21。45÷1.5、0.145÷0.015的商。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
二、抓住本质,化繁为简,创造性地处理教材
计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,完全没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中,抓住除数是小数的除法的本质,不在竖式计算上设置人为的障碍,降低学生学习的难度,才能使学生学得更轻松。
被除数和除数的小数位数不同,更明显地体现了商不变性质的应用,有助于学生更加深刻地理解算法的本质。计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
三、发挥学生的主体作用,让学生在自主的学习中获得新知,更新认知结构
在教学中,出示214.5÷15=14.3,要求学生根据商不变的规律说出21.45÷1.5、2.145÷0.15、0.2145÷0.015的商,让学生根据已有的`知识经验去尝试,再让学生通过思考、观察、比较2.052÷3.6、20xx÷0.36、2.052÷0.036的转化过程来发现除数是小数除法的转化方法。
最后通过计算来总结计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
四、巧用儿歌教学,帮助学生总结算法,突破难点
在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误,适时引用儿歌可以帮助学生较好的突破这个难点。“外移几,里移几;方向一致要注意;里缺补零要牢记;上下点点要对齐。”
返回首页