返回首页
智远网 > 短文 > 教案 > 正文

解方程教案

2025/10/08教案

此篇文章解方程教案(精选6篇),由智远网整理,希望能够帮助得到大家。

解方程教案 篇1

设计说明

本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:

1、在操作实践中验证等式性质(二)。

在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。

2、通过直观图理解解方程的过程。

在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。

课前准备

教师准备:

PPT课件

学生准备:

天平,若干个贴有标签的砝码

教学过程

猜想导入

师:谁能说出我们学过的等式性质?

[学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]

引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。

设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。

动手验证,探究规律

师:大家的猜想对不对呢?我们来验证一下。

1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

2、如果左侧再加上2个x克的`砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

5、通过上面的游戏,你发现了什么?

小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。

解方程

1、(课件出示教材70页方程:4y=20xx)

师:你们能求出这个方程的解吗?

(学生先独立尝试,然后小组交流,并汇报)

预设

方法一:想?×4=20xx,直接得出答案。

方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。

师:为什么方程的两边都除以4,依据是什么?

预设

生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

让学生说出用等式性质解方程的过程。

解方程教案 篇2

教学目标

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项。

教学重点:利用等式性质1解方程及移项法则;

教学难点:利用等式性质1来解释方程的变形。

教学准备

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

① 5x+6=9x②3x+5③7+5×3=22④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

① 2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的`物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:"两边"、"都"、"同"、"等式"。

2、利用等式性质1解方程:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意:解题格式。

例1解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=5 5x=7+4x

x=5-2 5x-4x=7

思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:

①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:

①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

解方程教案 篇3

教学目标

1、会正确找出一元一次方程中存在的相等关系

2、通过列方程解应用题,提高学生分析问题与解决问题的能力

重点、难点、关键点

重点:找出应用题中存在的相等关系

难点:正确分析应用题中的条件

关键:理解题意,并能正确找出应用题中的量与量之间的关系

教 学 过 程

时间分配

1、列一元一次方程解应用题题的步骤

2、例题探究

师:列一元一次方程解应用题的步骤有哪些?

师:出示例题

已知某电视机厂生产 三种不同型号的电视 机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,应用题,初中数学教案《应用题》。某商场根据市场调查花9万元从该厂购进两种不同型号的`电视机50台。请你分析一下是哪两种型号的电视机?

(教师引导,由学生自己解题过程)

生:思考议论回答

找等量关系

设未知数

列一元一次方程

解方程

写出答案

生:讨论

该问题需要分类讨论,有三种可能的情况

可能购买的是甲、乙两种型号的电视机,也可 能是乙丙或甲丙。

8分

20分

A组:

16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?

B组:

一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间 ?

教后札记

解方程教案 篇4

教学内容:

第8页第5-10题

教学目标:

1、进一步理解并掌握如ax±b=c、ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯;获得一些成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

教学重点、难点:

经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

教学对策:

提供基本题和拓展题,让不同程度的学生在原有基础上得到不同的发展。

教学准备:

投影片或小黑板

教学过程:

一、基本练习

1、解方程。

8.2x-7.4=9 2x+52x=162

32+6x=50 10.5x-7.5x=0.9

学生独立解答,投影四位学生的解题过程,教师及时讲评,学生集体订正。

2、看图列方程并求出x。(第8页第5题)

(图略)学生独立思考后列方程解答,然后交流,同桌之间互相检查解题情况,互相评价。

3、列方程解决实际问题。(第8页第6-10题)

(1)第6题。

学生独立思考数量关系列出方程,组织学生交流自己的思考过程,教师及时评价。

(2)第7、8、10题。

学生独立思考并列出方程,指名学生说说数量关系和列出的方程,教师及时评价。

将第7、8、10题与第6题进行比较,请学生说说两题的分析和解题过程有什么不同。

(3)第9题。

提问:根据题中提供的信息,你想到了哪些数量关系?你觉得用什么方法解决这个问题较简便?

鼓励学生用不同的方法来解决这一问题,然后请学生交流自己的想法,让学生感受方程的'思想方法及价值。

二、拓展练习

1、小明的储蓄罐里一共有87.5元,都是1元和5角的硬币。如果1元硬币的枚数是5角硬币的3倍。1元和5角的硬币各有多少枚?

学生认真读题后思考题中的数量关系,请学生交流。

在理解数量关系后组织学生正确列出方程并解答。

教师巡视学生练习情况,结合学生实际及时讲评。

2、甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是甲队的2倍。问甲、乙两队原有汽车各多少辆?

启发学生:两个车队的汽车总数没有发生变化,因此数量关系式为:甲车队汽车辆数+乙车队汽车辆数=180辆,然后再思考怎样用含有字母的式子来表示这两个未知的数量。

学生独立解答后组织交流,教师及时评价学生交流情况。

3、书上第8页的“思考题”。

在学生认真读题的基础上,教师引导学生理解“取了若干次后,红球正好取完,白球还有10个”,说明取出的红球比白球多10个。根据这样的数量关系来列出方程,解决本题。

三、全课总结

同桌之间互相检查本课练习情况,互相评价学习情况,再请几位学生全班交流。

四、布置作业

第8页第5、6、8、9题。

课后反思:

今天的练习课中,我主要借助教材上提供的一些实际问题和补充了一些练习题,想通过这些练习,帮助学生进一步提高分析数量关系的能力,能正确、熟练地运用列方程的方法来解决一些实际问题。我还参考了同一年级两位老师的“课前思考”,在课中根据学生实际情况对教学活动稍做调整,适当降低了练习难度,尽可能考虑到全体学生的发展。

练习课上,我也选用了高教导设计的一组有关行程问题的对比题,课中注意了对数量关系的分析,给学生较多的时间来思考、分析和交流。课堂上学习效果还不错,所以,我将教材上第8页的第5、6、7、8题作为课内作业,让学生独立完成。批完两个班学生的作业后,我发现自己对学生学习情况还没有摸透,特别是这学期刚接手的六二班。六二班中有接近1/3的学生在列方程解第5题时出现错误,分析错误原因主要是对于三角形面积计算公式和长方形周长计算公式已遗忘,列出错误的方程,因而造成错误,另一原因是在解这两个稍复杂的方程时,有些学生解方程有困难,胡乱计算。这两题虽然是有关几何图形面积和周长的计算,但由于数量关系式的不同,也可以列出不同的方程。而且有些方程可能较简单,更便于解答。看来,这一题还得重视起来,明天的练习课上,我要再组织学生来解答,更好地掌握用列方程的方法来解决有关几何图形的问题。

解方程教案 篇5

教学内容:

教科书第2~4页的例3、例4和试一试,完成练一练和练习一的第3~5题。

教学目标:

1.使学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得的结果仍然是等式,会用等式的性质解简单的方程。

2.使学生在观察、分析、抽象、概括和交流的过程中,积累数学活动的经验,培养独立思考,主动与他人合作交流习惯。

教学重点:

理解等式的`两边同时加上或减去同一个数,所得结果仍然是等式。

教学难点:

会用等式的这一性质解简单的方程。

教学过程:

一、教学例3

1.谈话:我们已经认识了等式和方程,今天这节课,将继续学习与等式、方程有关的知识。请同学们看这里的天平图,你能根据图意写出一个等式吗?

提问:现在的天平是平衡的,如果将天平的一边加上一个10克的砝码,这时天平会怎样?

谈话:现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示现在天平两边物体质量的关系吗?

2.出示第二组天平图,说说天平两边物体的质量是怎样变化的,你能分别列出两个等式吗?

3.出示第3、4组天平图,提问:你能分别说说这两组天平两边物体的质量各是怎样变化的吗?

谈话:怎样用等式分别表示天平两边物体变化前的关系和变化后的关系?

启发:这两组等式是怎样变化的?她们的变化有什么共同特点?

4.提问:刚才我们通过观察天平图,得到了两个结论,你能用一句话合起来说一说吗?

5.做练一练的第1题

二、教学例4

1.出示例4的天平图,你能根据天平两边物体质量相等关系列出方程吗?

2.讲解:要求出方程中未知数的值,要先写解,要注意把等号对齐。

3.完成试一试

4.完成练一练

提问:解这里的方程时,分别怎样做就可以使方程左边只剩下x了。

三、巩固练习

1. 做练习一的第3题

2.做练习一的第4题

3.做练习一的第5题

四、全课小结

提问:今天这节课我们学习了什么内容?你有哪些收获?还有什么不懂的问题?

五、作业

完成补充习题。

板书设计:

等式性质和解方程

等式的性质 解方程

50=50 50+10=50+10 解: X+10=50

x+a=50+a 50+a-a =50+a-a X-10=50-10

X=40

检验:把x=40代入原方程,看看左右两边是不是相等。40+10=50,x=40是正确的。

解方程教案 篇6

一、目的要求

使学生会用移项解方程。

二、内容分析

从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

x=a的形式有如下特点:

(1)没有分母;

(2)没有括号;

(3)未知项在方程的一边,已知项在方程的另一边;

(4)没有同类项;

(5)未知数的系数是1。

在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

如解方程 7x-2=6x-4

时,用移项可直接得到 7x-6x=4+2。

而用等式性质1,一般要用两次:

(1)两边都减去6x; (2)两边都加上2。

因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程当中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

三、教学过程

复习提问:

(1)叙述等式的性质。

(2)什么叫做方程的解?什么叫做解方程?

新课讲解:

1.利用等式性质1可以解一些方程。例如,方程 x-7=5

的两边都加上7,就可以得到 x=5+7,

x=12。

又如方程 7x=6x-4

的两边都减去6x,就可以得到 7x-6x=-4,

x=-4。

然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程。

利用移项解前面提到的方程 3x-2=2x+l

解:移项,得 3x-2x=1+2。①

合并,得 x=3。

检验:把x-3分别代入原方程的左边和右边,得

左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,

所以x=3是原方程的解。

在上面解的`过程当中,由原方程①的移项是指:

(l)方程左边的-2,改变符号后,移到方程的右边;

(2)方程右边的2x,改变符号后,移到方程的左边。

在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

课堂练习:教科书第73页 练习

课堂小结:

1.解方程需要把方程中的项从一边移到另一边,移项要变号。

2.检验要把数分别代入原方程的左边和右边。

四、课外作业

习题2。1 P73 复习巩固