《三位数乘两位数》教学设计
此篇文章《三位数乘两位数》教学设计(精选6篇),由智远网整理,希望能够帮助得到大家。
《三位数乘两位数》教学设计 篇1
教学目标
1、知识与技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。
2、能力目标:让学生通过两位数乘两位数到三位数乘两位数知识的迁移,感受数学知识和方法的内在联系,培养学生迁移类推的能力和解决简单实际问题的能力。
3、情感与态度目标:让学生获得运用已有知识解决新的计算问题的体会,体验成功的愉悦,进一步树立学习数学的自信心。
教学重点和难点
教学重点:
探索并掌握三位数乘两位数笔算乘法的方法,能正确地进行计算。
教学难点:
让学生理解三位数乘两位数的`计算中用第二个因数十位上的数去乘第一个因数,积的末尾应写在什么位置上。
教学过程
一、复习铺垫
同学们,车白泥小学一年一度的计算大赛即将开始,你们有信心赢得比赛吗?
一、赛前热身
1、牛刀小试
哪两位同学愿意请战?
白板出示竖式笔算:24×12= 19×12=
同学们说一说计算方法,竖式计算乘法要注意哪些问题?
2、脱口而出
口算怎么又快又准确的得出答案呢,能分享一下你的计算秘籍吗?
如果是142X12这样的三位数乘两位数,又该怎么算呢?
板书课题:三位数乘两位数
请同学们以同桌为小组,开展合作学习,动笔试一试……
指导并指名学生汇报,参照两位数乘以两位数的计算方法,计算三位数乘与两位数时,需要注意哪些问题?你能说一说吗?
团结协作的力量无穷大,看来,这个赛前热身对同学们来说,真的是小菜一碟,接下来的项目你们还敢继续挑战吗?看招。
二、东想西算
情境导入:
(白板出示)
普者黑风景区位于文山州丘北县境内,风景优美,景色宜人,是国家5A级景区。这不,家住广州市的李桐和爸爸慕名而来。
1、白板出示题目:火车行驶了12小时,每小时行驶195千米。广州市到普者黑景区有多少千米?
2、你想怎么列式? 195×12=(千米)
3、195 X 12,怎样来计算?
(1)你能运用估算知识猜一猜吗:广州市到普者黑景区大约有多少千米?说一说你的想法?
(2)你能用竖式计算出准确答案吗?试着做一做,在计算时,想一想这道题与142 X12相比较,有哪些值得注意的地方。
①学生独立思考,自己试着在练习本上算一算。尝试算出195×12的结果,并对照估算的情况,算一算估算值与准确值的误差是否合乎实际。
②巡回指导,特别关注计算有困难的学生。
③交流汇报、归纳解题策略。理解算理,掌握算法。
4、学生互相说算法。
5、你想提醒大家笔算时要注意那些问题?(引导学生说出做题过程中的易错点)
6、验算。你会验算吗?你有没有什么好的想法愿意和同学们分享?
三、计算接力赛----谁是计算大王
接下来这个项目就对我们班同学团结协作能力的考验了,要赢得此项比赛,就要有赖于同学们的默契合作了。我们即将选出六位骁勇善战的计算能手来出战。
结论:仔细观察上面的各道算式,想一想:三位数乘两位数积是( )位数或( )位数。
四、加时赛:
1、134×12176×47 425×36237×82
2、文山市思源实验学校平均每个班有32人,共有116个班,思源实验学校一共有多少人?
通过我们全班同学的努力,我们赢得了此次比赛的胜利,恭喜同学们!
五、课堂总结,学以致用
回顾一下这节课,你有什么收获想和大家分享吗?
《三位数乘两位数》教学设计 篇2
(一)学习目标
1、在解决实际问题的过程中,学会两位数乘一位数、整百数乘整十数的口算以及三位数乘两位数的估算和笔算,并能正确熟练的进行口算、估算和笔算;在具体情景中,探索积的变化规律。
2、在发现、提出并解决三位数乘两位数计算问题的过程中,逐步培养学生提出问题解决问题的能力,体验解决问题策略的多样性 。
(二)学习内容
基础性学习包
1、整百数乘整十数的口算
2、三位数乘两位数的笔算
3、三位数乘两位数(末尾有0)
4、选择合适的估算方法解决问题
5、积的变化规律
开发性学习包
聪明小屋(设计两三位数乘法计算中,有些因数的某个数位上的数不知道,进行推理的算式)
拓展性学习包
算式因素变化引起的积的变化
近期一段时间我们一直在进行笔算乘法的'学习,今天着重研究因数和积的变化规律。
首先看下面的两组题目,如:
6×2=12 20×4=80
6×20=120 10×4=40
6×80=480 5×4=20
仔细观察两组算式中因数的变化规律和积的变化规律。通过观察,两组算式最明显的特点是其中的一个因数没有发生任何变化。如第一组的第一个因数,始终是6,第二组的第二个因素始终是4。下面在分别来看。
第一组,一个因数没有变,另一个因数呈扩大的趋势。从第一个算式到第二个算式,2到20扩大了10倍(乘10),同时,积也跟着扩大10倍(乘10);第二个算式到第三个算式,20到80,扩大了4倍(乘4),积也跟着扩大了4倍(乘4),所以,我们可以得出一个结论,一个因数不变,另一个因数乘几,积也跟着乘几。
第二组,一个因数没有变,另一个因数呈缩小的趋势。从第一个算式到第二个算式,20到10缩小了2倍(除以2),同时,积也跟着缩小了2倍(除以2);第二个算式到第三个算式,10到5,缩小了2倍(除以2),积也跟着缩小了2倍(除以2),所以,我们可以得出一个结论,一个因数不变,另一个因数除以几,积也跟着除以几。
(三)整合点解读
1、学科单元内整合:
三位数乘两位数的计算,教师要用一个课件讲述计算时,对个位数和十位数分别相乘,然后相加;其他的特殊情况,如因数末尾有0的再进一步强调。
2、自主练习中的“志愿者擦玻璃”“信息窗1发放传单”等,教师要利用与品德课的整合,对学生进行教育,与语文课第四单元有关动物的内容进行整合,加强保护大自然的教育。
《三位数乘两位数》教学设计 篇3
课题:人教版小学数学四年级上册第49页三位数乘两位数的笔算
教学目标:
1.利用学生的迁移能力,总结、归纳三位数乘两位数的笔算方法,培养类比、分析和概括能力,发展应用意识。
2.让学生在探索计算方法和解决问题的过程中激发兴趣,进一步体验学习带来的快乐。
教学重点:三位数乘两位数的笔算方法。
教学难点:三位数乘两位数的算理。
教学过程:
一、复习
师:同学们准备好了吗?可以上课了吗?
生:准备好了。
师:上课
师:今天先让我们来展示一下自己的口算能力吧,请看大卡片出示的口算。
(卡片顺序出示口算题、生作答)
12×3 500×7 15×4 60×70 350×2
卡片出示197×5≈
师:大家看这道题的要求是什么?
生:估算
师:那约等于多少呢?
生:100
师:你是如何估算的。
生:把197看成200来估算,200乘5等于1000,所以197×5约等于1000。
师:通过刚才的口算和估算,我知道了大家的口算和估算掌握得很好,我们的笔算掌握提如何,来,做一道吧,请拿出练习本进行笔算。(教师在黑板上出示竖式45×12的竖式)
师:来,你做得最快,请你上黑板板演,请注意书写工整。
师:我发现有一部分同学做完了,做完的同学请回忆一下,两位数乘两位数的笔算乘法是如何计算的?
师:好,大家都做完了,我们一起来检查黑板上的这道题。哪位同学来评价一下。
(方案一)
生:她计算错了。
师:哪里出错了,他是如何错的。
(生具体回答)
师:你观察真仔细,老师帮他改过来。
师对板演的学生:以后可要注意,计算要处处细心。
(方案二)
生:她做对了。
师:谁来说两位数乘两位数的计算方法。
生:先用第二个因数的'个位去乘第一个因数,再用第二个因数的十位去第一个因数,最后两次乘得的数加起来。
师:你说得真清楚,我们把掌声送给她。
(生鼓掌)
二、创设情境、探究新知
师:看来大家两位数乘两位数的计算方法都掌握了,今天我们继续来研究乘法(板书:乘法)请看大屏幕。
(1)引入例1。(课件出示)
例1:李叔叔从海南乘火车去广州用了12小时,火车1小时行145千米。
师:李叔叔从哪到哪去?
生:从海南去广州。
师:乘坐什么交通工具
生:火车
师:你还知道什么?
生:12小时李叔叔可以到广州。
生:火车的速度的每小时145千米。
师:你能根据提供的信息提出一个数学问题吗?
生:海南到广州有多少千米?
师:你能列出横式吗?
生:能
师:请列出模式,不用计算。
(生列式)
师:列完式的同学想一想今天我们列的这个算式与以前学的有什么不同。
师:请一个同学告诉我你是怎么列式的?
生:145×12(师板书)
师:还有不同的列式吗?
生:12×145(师板书)
师:这两种列式都正确。
师:会计算吗,请动笔试一试吧。
(学生计算)
师:我想请一个同学说一说她计算的过程,我来板书。
(板书:145
×12
生:0
师:谁与谁乘得0。
生:二五得十,写零进一。
师:你这样说我就明白了,接着说。
生:二四得八加一得九、一二得二,一五得五……
师:五写在哪?
生:写在十位上。
师:也就是与因数的十位对齐是吗?
生:是
师:请接着说。
生:一四得四,一一得一。再把它们加起来。
师:个位是多少
生:个位是0,十位写4进1,百位6加一得7,千位上的1移下来。
师:她说得怎样?
生:她说得很清楚,完整。
生自觉鼓掌。
师:这道题的笔算过程。同学们都明白了吗?
生:明白
师:刚才说过程时,为了不打断她,我有一个问题没提,那就是那个5为什么写在十位上?谁能帮我解答?
生:这是十位上的1去乘145,乘得的145是指145个十,所以这个5要与十位对齐。
生:这次是十位上的1去乘5,一五得五,是指5个十,所以这个5应该与因数十位上的数对齐。
师:说得好,要是声音再大点就更好了。
师:计算这道题时。先用12个位上的2去乘145每一位上的数,得290,再用12十位上的1去乘145每一位上的数,得1450。最后把两次乘得的数相加。(师边说边在竖式旁边板书)145
×12
290→145×2=290
145→145×10=1450
1740→290+1450=1740
师:1450的0在竖式中为了简便就省略了。
师:刚才这样列式的(指黑板上的算式:12×145)同学,请说一说,你是怎样列竖式的。
生:列的竖式一样,也是145乘12。
师:大家都知道,两个因数交换位置,得数不变。所以可以把两个因数交换位置列出了竖式,是吗?交换位置与不交换位置来乘,有什么区别呢,我们来比一比,请看小黑板。(出示两种竖式)
师:你觉得哪种好些,为什么?
生:交换位置乘好,因为这样节约纸张。
师:还想到节约能源上去了,想得真细致。
《三位数乘两位数》教学设计 篇4
设计说明
三位数乘两位数的笔算是在学生已经掌握了三位数乘一位数和两位数乘两位数的笔算方法的基础上进行教学的。因此,本节课的重点是引导学生通过尝试、探究与交流等活动,经历三位数乘两位数的笔算过程,把已有笔算乘法的经验迁移到新知中来。本课教学设计具有以下特点。
1.关注经验,引导迁移。
教学时先复习几道数学计算题,通过两位数乘两位数的笔算复习题引入新课,唤醒学生已有的知识经验,对已学的知识进行归纳整理,这样为新课情境的引入做好了铺垫。在此基础上,让学生独立计算145×12,将两位数乘两位数的笔算方法迁移到三位数乘两位数中来,并引导学生结合现实的计算情境,理解三位数乘两位数的计算方法,使抽象的算法具体化,便于学生学习、理解和接受。
2.自主探究,合作交流。
在教学三位数乘两位数的竖式计算时,先让学生独立解决,再交流不同的计算方法,在比较中发现竖式计算的简便之处,以此突破本节课的教学重点,进一步完善学生的认知结构,有利于学生合理、灵活地进行计算。
课前准备
教师准备
PPT课件
学生准备
计算器
教学过程
⊙复习旧知,引入新课
1.复习两位数乘两位数的笔算方法。
42×18=25×16=
16×12=38×20=
师:同学们独立完成计算,想一想计算的方法,在小组中交流。
师:谁能和大家分享一下,你是怎么算出来的?
生:先用第二个因数个位上的数去乘第一个因数,积的末位和第一个因数的个位对齐;再用第二个因数十位上的数去乘第一个因数,积的末位和第一个因数的十位对齐;最后把两次乘得的积加起来。
2.导入新课。
这节课我们就在两位数乘两位数笔算方法的基础上讨论三位数乘两位数的`笔算方法。
设计意图:通过几道简单的计算题,让学生一方面回顾两位数乘两位数的笔算方法,另一方面为学习新知做好铺垫。这样的设计可以有效引入例1的数学情境,为学生独立探索估算和笔算提供更多的探索空间和时间,提高课堂教学的时效性。
⊙合作交流,探究新知
1.创设情境,引出例题。
(1)李叔叔从某城市乘火车去北京用了12小时。你们能算出该城市到北京的距离吗?(不能)缺什么条件?(不知道火车每小时行多少千米)
(2)师:(PPT课件出示教材47页例1)现在要计算该城市到北京有多少千米,怎么列式?(145×12)为什么要用乘法计算呢?
生:火车每小时行145千米,从该城市到北京用了12小时,求该城市到北京的距离,就是求12个145千米是多少,所以用乘法计算。
2.估算。(出示课堂活动卡)
3.笔算。
(1)过渡:通过刚才的估算,我们知道145×12的积接近1500。你能想办法算出145×12的准确结果吗?请同学们利用以前学过的算法,独立尝试在练习本上算一算。
(2)学生独立计算。(教师对学习有困难的学生予以指导)
(3)小组交流算法。
生1:把12拆分成10+2,145×12=145×10+145×2=1740。
生2:把145拆分成100+45,145×12=100×12+45×12=1740。
(4)全班交流,集体反馈竖式计算方法。
师:先算什么?(先算145×2)
师:再算什么?(再算145×10)
师:最后算什么?(2个145与10个145的和)
板书:145×12=1740
《三位数乘两位数》教学设计 篇5
教材说明
本节教材主要教学三位数乘两位数的笔算。它是在学生已掌握笔算两位数乘两位数的基础上进行教学的。本节教材内容共分为四部分:
1.三位数乘两位数的笔算。
共编排2个例题。例1教学三位数乘两位数的一般笔算方法,例2教学因数中间或末尾有零的笔算乘法。通过这两个例题的教学,使学生掌握三位数乘两位数的笔算算理和一般方法,并能将一般方法迁移到多位数的乘法运算中去。
2.“速度”概念和数学模型“速度×时间=路程”。
先介绍“速度”概念,再安排含两个小题的例3,根据学生已有的生活经验,使学生学会用复合单位表示物体的运动速度,并自主概括出速度、时间和路程之间的关系。
3.积的变化规律。
“探索规律”是数与代数领域要教学的主要内容之一。本小节根据乘法中因数变化引起积的变化情况引导学生探索积的变化规律。安排了一个例题──例4。引导学生通过观察、计算、说理、交流等活动,归纳出积的变化规律,并会用数学语言刻画这个规律,感悟函数的思想方法。
4.三位数乘两位数的估算。
估算是日常生活中常用的重要手段和方法。本节单列一个例题──例5教学估算,目的是使学生在掌握两位数乘两位数估算的基础上,进一步应用所学乘法知识通过估算的手段解决具体问题。估算没有固定的法则,应依据具体情况采用适当的策略,使估算结果尽可能接近实际。所以,例5中围绕“应该准备多少钱买票?”的问题,教材提供了两种方案,引导学生对比:“谁的估算比较合适?为什么?”这是教学估算最精要之处。它让学生明白,估算时,在什么情况下应估大些,什么情况下应估小些,才能使估算结果既接近准确数又符合实际需求。通过让学生经历用估算解决具体问题的过程,进一步培养学生灵活的估算能力,形成积极、主动的估算意识。
教学建议
1.放手让学生自主建构笔算乘法的认知结构。
本学段所学内容,是学生已掌握的两位数乘两位数的扩展和提升。因此,教学时,应密切关注学生已有的知识经验和认识发展水平,应为学生提供由旧知迁移到新知的广阔背景。如教学例1、例2、例5时,应引导学生回忆两位数乘两位数或三位数乘一位数的'笔算和估算,想一想列竖式后,应先算什么、再算什么比较方便合理;想一想如何根据具体情境取因数的近似值,才可能使计算结果既接近准确数又灵活方便。使学生在利用旧知解决新问题的过程中,加深对乘法运算意义的理解,提高乘法笔算、估算的计算技能,提高用乘法解决具体问题的能力,形成笔算乘法的良好认知结构。
2.注意书本知识与生活常识的结合。
本小节教学的重点之一,是使学生理解常见的数量关系,即刻画速度、时间和路程三者关系的模型:速度×时间=路程。这部分知识在学生生活中蕴藏着丰富的教学资源。教学时,应将书本上的例题与学生生活中的实例有机结合起来,让学生从自己熟悉的物体简单运动的常识出发归纳出速度、时间和路程之间的关系,并用这个关系去解决实际问题。
3.本小节可用7课时进行教学。
具体内容的说明和教学建议
例1及下面的“做一做”。
编写意图:
(1)精心选择以简单行程问题为背景的学习情境。在此情境中学习三位数乘两位数的乘法,一方面体现计算是因解决问题的需要而产生的,另一方面为后面抽象出速度、时间和路程之间的关系作铺垫。
(2)让学生自主探索三位数乘两位数的一般笔算方法。由于学生已掌握了三位数乘一位数和两位数乘两位数的笔算,因此,例题没有展示145×12的具体计算过程,只出示145×12的竖式结果,意在让学生充分应用已有经验,自主归纳145×12的具体步骤,知道应先算145×2,再算145×10,注意两部分积的相同数位对齐,最后相加便得结果,这样列竖式算比较方便。
(3)多项计算技能交互使用。对于如何计算145×12,教材展示了口算、笔算和用计算器验算三种算法,引导学生综合应用口算、估算、笔算、用计算器算等多项计算技能,自主选择合适的算法。
教学建议:
(1)让每一位学生经历“145×12”的计算过程。首先请学生估一估145×12的大致范围,然后尝试列竖式算出145×12的结果。并对照自己估算情况,算一算估算值与准确值的误差,是否合乎实际,这对提高学生估算的准确率很有帮助。练习时,应关注平时计算错误率较高的学生,看看他们每一部分积的书写位置和计算结果是否正确。反馈时,可让学生用自己的话说一说“145×12”的计算过程。说过程时,应说以下几点:①先算什么;②再算什么,积的书写位置怎样;③最后算什么。学生梳理计算步骤的过程,就是归纳三位数乘两位数笔算一般方法的过程,它使学生懂得应如何有序的进行操作和思考,如何有条理地去解决某一个具体问题。
对独立尝试计算有困难的学生,可作如下引导:先复习计算“45×12=?”或“145×2=?”,然后再计算“145×12”。
(2)引导学生用不同的方法检验自己运算的结果,其中之一是应用本学期学习过的计算工具──计算器。
(3)例1下面的“做一做”是最基本的练习,让学生独立用竖式计算,以巩固三位数乘两位数的笔算方法。练习时,应让每一个学生独立完成。完成后,可用计算器自行检验。
《三位数乘两位数》教学设计 篇6
说教材:
本课学习三位数乘两位数的笔算,是以两位数乘两位数的笔算为基础,两位数乘两位数的算理和算法都将直接迁移到三位数乘两位数中来,因此,学生对算理和算法的理解和探索并不会感到困难。但是,由于数位的增加,计算的难度也会相应的增加,计算中就会出现各种不同的情况,如:进位和连续进位、因数中间有0等。因此,这一课的学习对学生来说也是非常必要的。教材在安排这一部分内容时,有这样一些特点:
1、创设与教学内容相融的学习情境,在解决问题的过程中教学计算,三位数乘两位数都能在生活找到它的原型。
2、注重学生的自主探索,培养学生迁移类推能力。
3、加强估算,重视培养学生应用数学的意识。
说教法:
本节课是计算教学,传统的计算教学往往只注重单一的算理、算法及技能训练,学生深感计算枯燥,错误百出。计算本身是有很强的抽象性,但其反映的内容常常是现实的,与人们的生产、生活有着紧密的联系。本节课在教学法指导上着重突出以下几点:
1、情境教学促感悟
《数学课程标准》强调,要让学生在生动具体的情境中学习数学,本课借助情境窗创设的情景,让学生运用已有的知识经验,根据自己的体验,感悟生活中蕴含着大量的`数学信息,激发学生的学习兴趣。
2、自主探索体现主体性
新课程注重学生对知识的体验和探索过程,指出学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索和合作交流是学生学习的重要方式,给学生提供充足的自主探索空间。因此在教学中,尊重学生的思维方式,充分发挥学生的主体性地位,培养学生的自主探索精神,帮助不断积累积极的数学学习情感和体验。
教学目标:
1、结合具体情景理解掌握三位数乘两位数的计算方法,并能正确的进行计算。
2、在探究问题过程中,培养学生的迁移类推能力和解决简单实际问题的能力。
3、让学生在自主探究、合作交流、解决问题的过程中,体验数学学习的快乐。
教学重点和难点:
理解掌握三位数乘两位数的计算方法,并能正确的进行计算。
教学过程:
活动一:复习导入,引入新课:
1、口算:
14×3 49×220×30 400×20 14×20
12×5 16×460×40 100×70 21×4
2、笔算
43×12 26×17 32×6070×50
【本环节复习了旧知识,同时为新知识的学习架起桥梁。】
活动二: 创设人文情境------激发探究欲望:
师:同学们,我们都知道2008年奥运会在中国北京举行,青岛作为北京的合作伙伴,将承办帆船项目,因此,迎奥工程建设现在成为了青岛城市建设的主旋律,其中道路建设着墨最多。同学们请看(出示情景图)
【此环节能使学生感受到:原来生活中蕴含许多数学信息,学习数学能为生活服务,从而自觉的去学习数学。】
活动三:自主探究-----发现数学问题:
师:认真观察情景图,你都了解到哪些信息?
学生从情景图及文字提示中可能了解到以下信息:
1)一期工程历时15个月
2)平均每个月修建213米
3)二期工程12个月
4)平均每个月修建260米
根据这些信息你能提出哪些数学问题?(教师把学生提出的问题板书在黑
板上,本节课尚不能解决的问题放入问题口袋)
学生可能提出如下数学问题:
1)高速公路一期工程全长多少米?
2)高速公路二期工程全长多少米?
3)一期工程比二期工程长多少米?
4)这条高速公路全长多少米?
活动四:合作交流-----提出并解决问题:
师:同学们真厉害,提出了有价值的数学问题,这节课我们先来解决前面两个问题。先观察第一个问题,你想怎样列式? 你会计算吗?
把自己的想法与同位交流一下。(教师巡视,允许学生自主选择喜欢的算法。)
全班交流:出现两种算法:
1)估算:213×15≈200×15=3000
2)笔算:
2 1 3
× 1 5
1 0 6 5-------------213×5的积
2 1 3-----------------213×10的积
3 1 9 5
(请一生到讲台上讲解)师:告诉同学们,你是怎么算的?第二个因数的十位去乘第一个因数的个位时,积的末尾为什么要写在6的下面?你们同意他的说法吗?最后算什么?
2、接下来我们来解决第二个问题,你想怎样列式?怎样计算?迅速在练习本上计算出来。。
请两位持不同意见的同学板演。
2 6 0 2 6 0
× 1 2 ×1 2
5 2 0 5 2
2 6 0 2 6
3 1 2 03 1 2 0
教师引导学生对这两个竖式的计算过程进行比较,使学生通过观察、讨论,
明确第二种算法比较简便,从而使学生理解:利用“0”在乘法运算中的特性能使计算简便。
3、引导学生说出本节课所学内容。
【此环节的设计意图是:在此之前,学生已经积累了相当丰富的笔算方法,并通过小组讨论,全班交流,进而探讨出笔算的基本方法。从而使学生在轻松愉悦的氛围中掌握了知识,培养了自主探索的精神。】
活动五:巩固练习
1、试试身手:
174×30 348×27308×52180×40
2、火眼金睛辨对错:教材57页第8题
【此环节设计了两道有针对性的题目请学生练习,目的是巩固新知识。】
活动六:拓展应用
“254×36”三个同学算出的答案分别是:9142、9194、9148,只有一个答案是正确的。你能用最快的速度说出哪个结果是正确的吗?你是怎么知道的?
请学生做课本56页第4题。
【此环节设计的目的是:培养学生思维的灵活性。】
活动七:课堂总结
这节课你是怎样学会了三位数乘两位数的笔算?
【此环节的设计意图是:通过让学生回想如何学会三位数乘两位数,引出迁移的学习方法,授人以渔。】
 返回首页
    返回首页